Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
33-37.docx
Скачиваний:
0
Добавлен:
06.12.2018
Размер:
266.86 Кб
Скачать

33

Динамические насосы

Один из видов насосов – это динамические насосы. Сейчас они используются во многих сферах производства и в быту. Если говорить об их основных свойствах и преимуществах можно назвать следующие качества.

Во-первых, в них движущей силой процесса становится инерция. Так же в них происходит двойное преобразование энергии, в объёмных насосах только одинарное. Динамические насосы легко справляются с перекачкой загрязнённых жидкостей. Подача жидкости в них идёт беспрерывно, так же во время работы они не так сильно шумят и вибрируют, как объёмные насосы.

Среди динамических насосов можно выделить в основную группу лопастные насосы, которые в свою очередь делятся на несколько видов. Основным признаком этой группы является лопастное колесо, используемое в качестве главной рабочей детали.

Центробежные насосы – широкий класс лопастных насосов. Движение в этом виде насосов происходит за счёт действия центробежных сил. В основном такие насосы применят в водопроводных системах, а так же других смесей и жидкостей. В этой группе так же выделяются несколько отдельных устройств, которые различаются по конструкции. Центробежно-шнековые насосы, которые способны перекачивать даже такие жидкости, как клей. Осевые и полуосевые насосы, перемещение жидкости в таких насосах идёт вдоль оси. Консольные насосы, которые используют для перекачки различных жидкостей с твёрдыми примесями. Радиальные насосы, у которых главной деталью являются колёса.

Отдельный вид лопастных насосов – это вихревые насосы. Обычно их используют для того, чтобы перекачивать разнообразных маловязких и чистых жидкостей, а так же других веществ, например сжиженных газов. Именно вихревые насосы сочетают в себе плюсы динамических и объёмных насосов.

Среди динамических насосов можно выделить струйные насосы. Принцип их работы основан, на передаче энергии перекачиваемой жидкости от рабочей жидкости. В основном такие насосы применяются в глубоких скважинах для добычи нефти.

Так же к динамическим насосам относится гидротаранный насос. Такое устройство особенно удобно, что не требует внешней энергии, например электричества, то есть работает автономно. Может без труда поднять жидкость с глубины несколько десятков метров.

Динамические насосы подразделяются на:

  • Лопастные насосы, рабочим органом у которых служит лопастное колесо или мелкозаходный шнек . В них входят:

    • Центробежные, у которых преобразование механической энергии привода в потенциальную энергию потока происходит вследствие центробежных сил, возникающих при взаимодействии лопаток рабочего колеса с жидкостью. Центробежные насосы подразделяют на:

      • Центробежно-шнековый насос — вид центробежного насоса с подводом жидкости к рабочему органу выполненному в виде мелкозаходного шнека большого диаметра (дисков), расположенному по центру, с выбросом по касательной вверх или бок от корпуса.

      • Консольный насос — вид центробежного насоса с односторонним подводом жидкости к рабочему колесу, расположенному на конце вала, удалённом от привода.

      • Осевые (пропеллерные) насосы, рабочим органом которых служит лопастное колесо пропеллерного типа. Жидкость в этих насосах перемещаются вдоль оси вращения колеса. Быстроходные насосы с высоким коэффициентом быстроходности, характеризуются большими значениями подач, но низких значениях напора.

      • Полуосевые (диагональные, турбинные) насосы, рабочим органом которых служит полуосевое (диагональное, турбинное) лопастное колесо.

      • Радиальные насосы, рабочими органами которых служат радиальные рабочие колеса. Тихоходные одноступенчатые и многоступенчатые насосы с высокими значениями напора при низких значениях подач.

      • Центробежно-шнековые (дисковые) — способны перекачивать карамелизующиеся и склеивающиеся массы, типа клея

    • Вихревые насосы — отдельный тип лопастных насосов, в которых преобразование механической энергии в потенциальную энергию потока (напор) происходит за счёт вихреобразования в рабочем канале насоса.

  • Струйные насосы, в которых перемещение жидкости осуществляется за счёт энергии потока вспомогательной жидкости, пара или газа (нет подвижных частей, но низкий КПД).

  • Тараны (гидротараны), использующие явление гидравлического удара для нагнетания жидкости (минимум подвижных частей, почти нет трущихся поверхностей, простота конструкции, способность развивать высокое давление на выходе, низкие КПД и производительность)

34

 Гидротурбина это лопаточная машина, приводимая во вращение потоком жидкости, обычно речной воды. По принципу действия гидравлические турбины подразделяют на активные (свободоструйные) и реактивные (напороструйные); по конструкции - на вертикальные и горизонтальные.

 К реактивным гидротурбинам одинарного регулирования относят турбины, имеющие направляющий аппарат (либо рабочее колесо) с поворотными лопастями (лопатками). У гидротурбин двойного регулирования и направляющий аппарат и рабочее колесо - с поворотными лопастями. Обычно гидротурбины используются в гидроэлектрических станциях для привода электрических генераторов.

Гидрогенератор - синхронный генератор, приводимый во вращение гидравлической турбиной,(50).

В зависимости от расположения оси вращения различают вертикальные и горизонтальные гидрогенераторы; по частоте вращения - тихоходные (до 100 об/мин) и быстроходные (свыше 100 об/мин). Мощность гидрогенераторов от нескольких десятков до нескольких сотен МВт.

По типу рабочего тела

  • Газовые турбины

  • Паровые турбины

  • Гидротурбины

35

Конструкция турбин

Модель одной ступени паровой турбины

Паровая турбина с раскрытым статором. На верхней части статора видны лопатки выравнивающего аппарата

Турбина состоит из двух основных частей. Ротор с лопатками — подвижная часть турбины. Статор с выравнивающим аппаратом — неподвижная часть.

По направлению движения потока рабочего тела различают аксиальные паровые турбины, у которых поток рабочего тела движется вдоль оси турбины, и радиальные, направление потока рабочего тела в которых перпендикулярно оси вала турбины. Центробежные турбины (турбокомпрессоры) также выделяют как отдельный тип турбин.

По числу контуров турбины подразделяют на одноконтурные, двухконтурные и трёхконтурные. Очень редко турбины могут иметь четыре или пять контуров. Многоконтурная турбина позволяет использовать большие тепловые перепады энтальпии, разместив большое число ступеней разного давления.

По числу валов различают одновальные, двухвальные, реже трёхвальные, связанных общностью теплового процесса или общей зубчатой передачей (редуктором). Расположение валов может быть как коаксиальным так и параллельным с независимым расположением осей валов.

В местах прохода вала сквозь стенки корпуса установлены концевые уплотнения для предупреждения утечек рабочего тела наружу и засасывания воздуха в корпус.

На переднем конце вала устанавливается предельный регулятор (регулятор безопасности), автоматически останавливающий (замедляющий) турбину при увеличении частоты вращения на 10—12 % сверх номинальной.

Особенности

  • Себестоимость электроэнергии на российских ГЭС более чем в два раза ниже, чем на тепловых электростанциях.[1]

  • Турбины ГЭС допускают работу во всех режимах от нулевой до максимальной мощности и позволяют быстро изменять мощность при необходимости, выступая в качестве регулятора выработки электроэнергии.

  • Сток реки является возобновляемым источником энергии.

  • Строительство ГЭС обычно более капиталоёмкое, чем тепловых станций.

  • Часто эффективные ГЭС более удалены от потребителей, чем тепловые станции.

  • Водохранилища часто занимают значительные территории, но примерно с 1963 г. начали использоваться защитные сооружения (Киевская ГЭС), которые ограничивали площадь водохранилища, и, как следствие, ограничивали площадь затопляемой поверхности (поля, луга, поселки).

  • Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.

  • Водохранилища ГЭС, с одной стороны, улучшают судоходство, но с другой — требуют применения шлюзов для перевода судов с одного бьефа на другой.

  • Водохранилища делают климат более умеренным.

[Править] Принцип работы

Схема плотины гидроэлектростанции

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

  • мощные — вырабатывают от 25 МВт и выше;

  • средние — до 25 МВт;

  • малые гидроэлектростанции — до 5 МВт.

Мощность ГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Типичная для горных районов Китая малая ГЭС (ГЭС Хоуцзыбао, уезд Синшань округа Ичан, пров. Хубэй). Вода поступает с горы по чёрному трубопроводу

Гидроэлектростанции также делятся в зависимости от максимального использования напора воды:

  • высоконапорные — более 60 м;

  • средненапорные — от 25 м;

  • низконапорные — от 3 до 25 м.

В зависимости от напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных — ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных — поворотнолопастные турбины в железобетонных камерах. Принцип работы всех видов турбин схож — вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на гидрогенератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами — стальными или железобетонными, и рассчитаны на различный напор воды.

Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующейся концентрации воды. Здесь можно выделить следующие ГЭС:

  • русловые и приплотинные ГЭС. Это наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.

  • плотинные ГЭС. Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.

  • деривационные гидроэлектростанции. Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние — спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида — безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище — такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.

  • гидроаккумулирующие электростанции. Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

В состав гидроэлектрических станций, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое.

Ценность гидроэлектрической станции состоит в том, что для производства электрической энергии, они используют возобновляемые природные ресурсы. Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций [2] Преимущества

  • использование возобновляемой энергии.

  • очень дешевая электроэнергия.

  • работа не сопровождается вредными выбросами в атмосферу.

  • быстрый (относительно ТЭЦ/ТЭС) выход на режим выдачи рабочей мощности после включения станции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]