Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsia_4_Arifmetika.doc
Скачиваний:
0
Добавлен:
05.12.2018
Размер:
142.85 Кб
Скачать

4. Восьмеричная и шестнадцатеричная системы счисления.

Двоичная система, удобная для компьютеров, для человека неудобна из-за ее громоздкости и непривычной записи.

Перевод чисел из десятичной системы в двоичную и наоборот выполняет машина. Однако, чтобы использовать компьютер, следует понимать слово машины. Для этого и разработаны восьмеричная и шестнадцатеричная системы.

Правило: Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему: достаточно каждую цифру числа заменить эквивалентной ей двоичной триадой (тройкой цифр для восьмеричной) или тетрадой (четверкой двоичных цифр для 16-ой системы).

Например: 1538 = 001 101 0112 = 01101011.

Правило: Чтобы, наоборот, перевести число из двоичной системы в восьмеричную или шестнадцатеричную, его нужно разбить влево и вправо от запятой на триады (для восьмеричной) или тетрады (для шестнадцатеричной) и каждую такую группу заменить соответствующей восьмеричной (шестнадцатеричной) цифрой.

Например: 10100111 = 010 100 1112 = 2478 .

5. Перевод целого числа из десятичной системы в любую другую позиционную систему счисления.

Правило: При переводе целого десятичного числа в систему с основанием q его необходимо последовательно делить на q до тех пор, пока не останется остаток, меньший или равный q–1. Число в системе с основанием q записывается тогда, как последовательность остатков от деления, но записанных в обратном порядке, начиная с последней цифры.

Пример: Перевести число 7510 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 7510 = 1 001 0112 = 1138 = 4B16.

2 8 16

75 | 1 75 | 3 75 | B (1110)

37 | 1 9 | 1 4 | 4

18 | 0 1 | 1 0 |

9 | 1 0 |

4 | 0 /\

2 | 0 |

1 | 1 |

0 |

6. Пеpевод пpавильной десятичной дpоби в любую другую позиционную систему счисления.

Правило: Пpи переводе правильной десятичной дpоби в систему счисления с основанием q необходимо сначала саму дробь, а затем дробные части всех последующих произведений последовательно умножать на q, отделяя после каждого умножения целую часть пpоизведения. Тогда число в новой системе счисления записывается как последовательность полученных целых частей пpоизведения.

Умножение пpоизводится до тех поp, пока дpобная часть пpоизведения не станет pавной нулю. Это значит, что был сделан точный пеpевод числа. В пpотивном случае пеpевод осуществляется до заданной точности. Достаточно того количества цифp в pезультате, котоpое поместится в ячейку памяти.

Пример: Перевести число 0,3510 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Например: 0,3510 *8 = (0,) (2),8*8 = (6),4*8 = (3),2 = 0,2638

0,3510 *2 = (0,) (0),7*2 = (1),4*2 = (0),8*2=(1),6*2=(1),2*2=(0),4=0,0101102

0,3510 *16 = (0,) (5),6*16 = (9),6 = 0,5916

Ответ: 0,3510 = 0,0101102 = 0,2638 = 0,5916 .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]