Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Цикл 2.doc
Скачиваний:
6
Добавлен:
05.12.2018
Размер:
845.82 Кб
Скачать

4. Ферромагнетики

Существует класс магнетиков, для которых (а значит, и μ) гораздо больше единицы (μ~104). Эти вещества называются ферромагнетиками. Типичные примеры ферромагнетиков: железо, никель, кобальт, а также полученные на основе этих металлов некоторые химические соединения, сплавы, керамики (ферриты), а также редкоземельные металлы.

Для ферромагнетиков характерно также и то обстоятельство, что магнитная проницаемость этих веществ зависит от внешнего магнитного поля, а также от предыстории намагничения данного образца. Даже в отсутствие внешнего магнитного поля они могут обладать намагниченностью (остаточная намагниченность). В этом ферромагнетики аналогичны сегнетоэлектрикам. Подобно последним, кривая намагничения ферромагнетика [зависимость B = f(H)] имеет вид петли, называемой петлей гистерезиса (рис. 10.3)9.

Пусть ферромагнетик был первоначально размагничен (B = 0, H = 0). Приложим к образцу ферромагнетика внешнее поле Н и будем его плавно увеличивать. Ферромагнетик будет намагничиваться, что выразиться в увеличении напряженности поля В в соответствии с соотношением В = µµ0Н. Поскольку в ферромагнетиках магнитная проницаемость µ сама зависит от приложенного поля, то намагничение происходит нелинейно, а по кривой ОА, которая называется основной кривой намагничения (рис. 10.3). В точке А индукция Вн магнитного поля и напряженность Hн соответствуют состоянию магнитного насыщения.

Рис. 10.3. Петля гистерезиса

Если теперь уменьшать внешнее поле, то ферромагнетик начнет размагничиваться, но оно будет происходить вдоль кривой AC.

При H = 0 намагниченность не исчезнет, а будет принимать значение, соответствующее отрезку ОС (остаточная намагниченность ). Важно отметить, что после намагничения, даже в остутсвии внешнего поля ферромагнетик сохраняет остаточную намагниченность. Именно таким способом получают постоянные магниты. Для ее уничтожения остаточной намагниченности необходимо приложить в обратном направлении внешнее поле Н = Нс (отрезок DO). Традициооно сложилось, что ввеличина Нс называется коэрцитивной силой10 Принято считать ферромагнетик жестким, если 100 А/м. Если Hс < 100 А/м, то ферромагнетик считается мягким.

В точке А' вновь достигается состояние насыщения намагничения. Если теперь вновь изменить направление напряженности магнитного поля, то намагничение ферромагнетика будет происходить вдоль кривой A'C'D'A.

Если при циклическом намагничении ферромагнетика напряженность поля будет достигать значений, соответствующих состоянию насыщения намагничения, то получаемая при этом петля гистерезиса будет иметь максимальные размеры. При использовании более слабых циклически изменяющихся магнитных полей будут получаться петли гистерезиса меньших размеров — частные циклы намагничения11.

Природа ферромагнетизма может быть рассмотрена только на основе квантовой механики. В рамках классической теории можно дать лишь качественное объяснение этому явлению. В ферромагнетиках ответственными за их магнитные свойства являются собственные (спиновые) магнитные моменты электронов. Для атомов этих веществ энергетически более выгодной оказывается конфигурация с параллельными спинами электронов. При этом индукция магнитного поля, создаваемого атомами (ионами) с такой ориентацией спинов, оказывается весьма значительной, так что в пределах макроскопических областей (порядка нескольких микрометров) магнитные моменты всех атомов ориентируются вдоль одного общего направления. Такие области, характеризующиеся одинаковой ориентацией магнитных моментов всех атомов, называются доменами12. В пределах домена ферромагнетик спонтанно намагничен до насыщения и обладает определенным магнитным моментом, но направление этого момента различно для различных доменов (рис. 10.4).

П оэтому в отсутствие внешнего поля (и остаточной намагниченности) суммарный магнитный момент ферромагнетика равен нулю. Между доменами существуют границы некоторой толщины, в пределах которых намагниченность изменяет свое направление от ориентации в одном домене к ориентации в другом домене. Увеличение намагниченности при росте напряженности магнитного поля происходит в несколько стадий. При слабых полях (начальный участок основной кривой намагничения ОА на рис. 10.3) происходит смещение границ и поворот граничных стенок, вследствие чего увеличиваются те домены, магнитные моменты которых составляют меньший угол с напряженностью H поля за счет доменов, у которых этот угол больше. Домены 1 и 3 на рис. 10.4a увеличиваются за счет доменов 2 и 4. В результате энергетически выгодной становится конфигурация представленная на рис. 10.4b.

На среднем участке кривой ОА наблюдается полное исчезновение доменов с «невыгодной» ориентацией и, наконец, на верхнем участке этой кривой (вблизи точки А) происходит постепенный поворот магнитных моментов всех доменов в направлении поля до тех пор, пока весь ферромагнетик не превратится в однодоменный кристалл и не будет достигнуто состояние насыщения при намагничении13 (рис. 10.4е.).

Сами по себе ферромагнетики являются частью класса парамагнетиков. Поскольку при определенных условиях переходят в состояние парамагнетика. У каждого ферромагнетика имеется предельная температура (точка Кюри Тс), при которой домены распадаются и ферромагнетик превращается в парамагнетик. Для железа, например, эта температура равна 768 °С. При охлаждении ниже точки Кюри14 в ферромагнетике вновь возникают домены.