Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
РАДИОБИОЛОГИЯ_1.doc
Скачиваний:
72
Добавлен:
04.12.2018
Размер:
707.58 Кб
Скачать

3. Вероятностная модель радиационного поражения клетки.

Вероятностная модель радиационного поражения клетки предложена Ю.Г.Капульцевичем в 1978г на основе анализа количественных закономерностей различных реакций дрожжевых клеток на облучение. В предлагаемой модели принцип попаданий дополняется предположением о вероятностном характере повреждений.

Согласно этой модели разные клетки, подвергнутые облучению в одной и той же дозе, поражаются в разной степени в соответствии с принципом попадания, но в отличие от классических представлений, и потенциальные, и реализованные повреждения проявляются с вероятностью меньше единицы. Реализованные повреждения ( или индуцированные ими изменения ) наследуются при делении клеток и с некоторой вероятностью, зависящей от числа этих повреждений приводят к торможению клеточного деления. При этом вероятность проявления повреждения может зависеть как от биологических ( генетических ) особенностей клеток, так и от условий их культивирования, увеличиваясь от ухудшения этих условий. Вероятностная модель в значительной степени основанная на принципе попадания, имеет много общего с классическими моделями. В тех случаях, когда вероятность проявления повреждения равна единице, вероятностная модель переходит в классическую одноударную модель. При количественном анализе экспериментальных данных, который ограничивается средними характеристиками популяции облученных клеток, вероятностная модель зачастую приводит к таким же результатам, как и многоударная. Следовательно, классические модели теории попаданий можно считать частными случаями вероятностной модели, проявляющимися при определенных ограничениях.

Главное отличие вероятностной модели от классических представлений состоит в том, что согласно последним радиочувствительность клетки определяется лишь объемом мишени и критическим числом попаданий. С позиций же вероятностной модели проблема радиочувствительности представляется более сложной. Процесс радиационного поражения клетки предлагается формально разделить на три этапа.

Первый этап – осуществление событий попадания, в результате которых формируются первичные потенциальные повреждения. Вероятность образования первичного повреждения на единицу дозы излучения зависит от величины эффективного объема (V) и от величины энергии, необходимой для образования первичного повреждения. Поскольку, отнюдь не всякое выделение энергии в эффективном объеме может привести к образованию первичного повреждения, то клетка, по-видимому, способна восстанавливаться от него еще на стадии формирования потенциальных повреждений. Итак, на этой стадии радиочувствительность определяется величиной эффективного объема и вероятностью (p) образования потенциального повреждения при локальном выделении в эффективном объеме энергии «Е». Оба эти параметра (V и p) могут зависеть как от биологических особенностей объекта, так и от условий облучения, например, от температуры, влажности, концентрации кислорода и т.п.

Второй этап радиационного поражения – реализация потенциальных повреждений. Так как клетки способны восстанавливаться, то реализованными оказываются не все возникшие потенциальные повреждения, а лишь часть их (r). Следовательно, радиочувствительность клетки определяется и вероятностью реализации потенциального повреждения. Все три параметра ( V,p,r ) определяют частоту «b» реализованных повреждений на единицу дозы излучения b=V·p·r и среднее число «а» реализованных повреждений при дозе «D», т.е. а = b·D. С помощью параметра «b» вероятностная модель учитывает зависимость радиобиологических эффектов от дозы излучения, ЛПЭ и продолжительности восстановления.

Третий этап радиационного поражения – различные вторичные нарушения нормального протекания внутриклеточных процессов, вызываемые реализацией повреждений. По-видимому, и на этом этапе возможно восстановление клеток от последствий реализованных повреждений или их компенсации. Поэтому вероятность проявления данного реализованного повреждения не равна единице, а характеризуется величиной (α), которая зависит от биологических особенностей клетки и от условий культивирования.

Таким образом, радиочувствительность клетки, о которой мы судим по кривой выживания, определяется четырьмя параметрами ( V, p, r и α ) достаточными, однако, не только для описания формы кривой, но и всего разнообразия проявления действия излучений на репродуктивную способность клеток, зависимости радиобиологических эффектов от условий культивирования клеток и физических характеристик излучения.

Таковы достоинства рассмотренной вероятностной модели, которую можно считать логическим звеном в развитии количественной радиобиологии.

Однако, впоследствии сам автор модели указал на ряд ее ограничений, свидетельствующих о необходимости дальнейшего совершенствования наших теоретических представлений.

Прежде всего, ни сама модель, ни производимый с ее помощью анализ реакций клеток на облучение не позволяют выявить природу повреждений, лежащих в основе этих реакций, ибо для этого необходимы специальные методы исследования. Кроме того, нельзя забывать, что сделанные выводы справедливы для изученных эффектов только применительно к дрожжевым клеткам.

Если говорить о клетках млекопитающих, то до сих пор детальное распределение их по формам инактивации количественно не изучено и это затрудняет проверку применимости вероятностной модели к описанию лучевых реакций этих клеток.

Доступная литература: (9) – стр.108-124; (10) – стр.158-169