Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции / лекции.doc
Скачиваний:
78
Добавлен:
21.02.2014
Размер:
1.92 Mб
Скачать

1.4 Параметры микросхем.

Каждая микросхема оценивается рядом параметров, обусловленных внутр.структурой и конструктивным исполнением. Некоторые из этих параметров касаютсяконкретной микросхемы, др. хар-ют все изделия данной серии. Если в условияхэксплуатации эти параметры будут выдержаны, завод изготовитель гарантируетнормальную работу микросхем. Значения параметров, как правило, задаются с запасоми не исчерпывают физич. возможностей микросхемы, однако превышать их неследует, особенно же, от кот. зависят работоспособность и надежность приборов.

Оценивают микросхемы по следующим основным параметрам:

1) быстродействию (задержка переключения);

2) напряжению питания;

3) потребляемой мощности;

4) коэф. разветвления по выходу;

5) коэф. объединения по входу;

6) помехоустойчивости;

7) энергии переключения;

8) надежности;

9) стойкости к климатическим и механ. воздействиям.

Быстродействие хар-ся max частотой смены входных сигналов, при кот. еще ненарушается норм, функционирование. Это один из важнейших параметров, т.к. опр-етвремя обработки информации.

Инерционность полупроводниковых приборов и емкости служат причиной того, чтокаждое переключение сопровождается переходными процессами, отчего фронтимпульсов растягивается. Когда частота смены входных сигналов не велика, можносчитать, что переключение происходит мгновенно, а при повешенных частотахприходится считаться с искажениями импульсов. Фронты искаженных прямоугольныхимпульсов представляют собой участки кривых, но для простоты их принято заменятькусочками прямых.

Для оценки временных св-в микросхем сущ-ет несколько параметров, на практикеобычно пользуются так называемой задержкой распространения сигнала, кот.представляет собой интервал времени между входным и выходным импульсами,измеренными на уровне 0.5. времена задержки распространения сигнала при вкл. t1?0Hпри выкл. t0'1 близки, но не равны. Обычно пользуются усредненным параметром (1.1)

*3д.р.ср. = 0,5 (t'^+t0'!), кот. наз. средним временем задержки распространения.На рис. 1 Сочетание Вкл. - выкл. -11'0;Выкл. -вкл. -10'1;

I

*зд.р.ср. - используют при расчете временных хар-к цепочек посл-но соед. по этомупараметру ИС можно разделить на:

1) Сверхбыстродейств. 13д.р.ср. < 5 не

Рпотер = 50..100мВт

Быстродейств. 1зд.р.ср. = 50.. 100 не.

Рпот.ср. - 20..50 мВт

2) Среднего 1зд.р.ср. = 10..100 не

Рзд.р.ср. = 1..30 мВтМалого 1зд.р.ср > 100 неРпот.ср. < 1 мВтРис. 1 Оценка задержки сигналов.

а) Входной импульс;

б) выходной импульс и инверсный;

в) выходной импульс без инверсий.

Иногда пользуются близкими параметрами - временем, задержкой вкл. t1'0 и выкл.г0'1, они измеряются на уровнях 0,1 и 0,9 соответственно.

КрАз - логич. элемента (нагрузочная способность) опр-ет max идентичных эл-ов,может быть подключено к выходу данной схемы. При этом должна обеспечиватьсяустойчивая передача сигналов «О» или «1» при воздействии дестабилизирующихфакторов: изменение t°C; уменьшение номиналов ист. питания в пределахдопустимого.

Нагрузочная способность выражается целым полодит. числом (КРАЗ = 2,4,6,10 и т. д.).Чем выше нагрузочная способность эл-та, тем выше его логич. возможности темменьше требуется для построения вычисл. устройств. Однако увеличивать бесконечнопараметр КРАЗ нецелесообразно, т.к. это ведет к снижению быстродействия, увелич.мощности потребления, ухудшению частичных хар-к и помехоустойчивости.

Поэтому в состав серии ИС входят обычно эл-ты с низкой нагрузочнойспособностью (краз = 2..10 осн. логич. эл-ты) и с высокой нагрузочной способностью(КРАЗ = 20..50).

Это дает возможность разработчику проектировать военную технику с оптимальнымсоотношением между потребляемой мощностью и количеством ИС в машине.

ИС низкой нагрузочной способностью (Краз 2.. 10 осн. логические элементы).

Более мощные схемы обладают повышенным по сравнению с маломощнымисхемами быстродействием. Снижение микросхемами мощности потребления присохранении высокого быстродействия - одна из задач микроэлектроники.

рпот ~ средняя мощность потребления, важнейший параметр ИС.

Лог. ИС может находиться:

1) в стадии включения;

2) в состоянии " Включено";

3) в состоянии " Выключено";

4) в состоянии выполнения.

Каждое из этих состояний характеризуется различной мощностью потребления. Приэтом в зависимости от места логич. элемента мощность потребления будетпроисходить в основном при переключении из одного состояния в другое для одноготипа элементов и в состоянии " Вкл ".Рвкл для другого типа элементовхарактеризуются средним значением Рпотр.

р = ( Р° + Р1 )/2

гпотр.ср. \ г ^ г ) I *•

Р° - в состоянии " Выкл "

Р1 - в состоянии " Вкл ".

По мощности потребления ИС делят на:

Мощные 30 мВт < Рпо1р. ср. <ЗООмВт;

Средние ЗмВт < Рпотр ср < 30 мВт;

Маломощные 0,3 мВт < РПОтр.ср.< 3 мВт;

Микроваттные 1 мкВт < РПОтр.ср < ЗООмкВт;

Нановаттные Рп(Пр.ср. < 1 мкВт.

Используются некоторые дополнительные временные параметры, обусловленныепринципом действия. Например: время задержки переключения, максимальная частотапереключения и др.

Коэффициент разветвления по выходу (коэффициент нагрузки ).

Краз ~ характеризует нагрузочную способность микросхемы. Этот параметропределяет max число вых. эл-ов данной серии, кот. можно нагружать вых.микросхемы без нарушения ее норм, функционирования.

Коэффициент объединенный по выходу (Коб) - определяет max возможное числовходов ИС, по кот. реализуется логич. функция.

Для простейших логич. эл-ов это число равноценных входов по И либо ИЛИ. Логич.эл-ты массового производства выпускаются с 2,3,4 и 8 вых. Когда возникаетнадобность в большем числе входов, применяют специальные ИС - расширители,числа входов кот. не имеют самостоятельного применения, либо используютнесколько однотипных эл-ов, кот. соединяют с учетом законов булевской алгебры.

Более сложные устройства имеют и др. выходы: адресные, упаковочные,разрешающие, входы синхронизации и т.д. По отношению к индивидуальнымкаскадам каждый такой вход обычно представляет такую же нагрузку как и логич.(информационные ) входы. Увеличение Коб ведет к потере частотных хар-к,уменьшению помехоустойчивости увеличению мощности потребления.

Помехоустойчивость или, как ее еще наз., шумовой иммунитет определяетдопустимое напряж. Помех на входах микросхемы и непосредственно связана с еепередаточной хар-ой.

Статическую помехоустойчивость связывают с помехами, длительность кот.больше времени переходных процессов, а динамическую - с кратковременнымипомехами. Для обоих видов помехоустойчивости может учитываться воздействиенапряж. низкого и высокого уровней.

Статической помехоустойчивостью по низкому уровню считается разность

U ном =' U вых млх - U вх мах- , (1-2)

где ивых мах - тах допустимое напряж. низкого уровня на вых. нагрузочноймикросхемы.

ивых max- max допустимое напряж. низкого уровня на вх. нагружающей ИС.u°hom - отпирающая помеха.Помехоустойчивость по высокому уровню определяется как

U ном=!и вых.min -U bx.min-, (1-3)

здесь и'вых min - mm напряж. высокого уровня на вых. нагруженной ИС.U1 вых min - min допустимое напряж. высокого уровня на нагружающем выходе.U1 вых - запирающая помеха.

Так логич. ИС может находится в одном из двух устойчивых состояний, торазличают:

1) помехоустойчивость закрытой схемы по отношению к отпирающим помехам

тт°и ном

2) помехоустойчивость открытой схемы по отношению к запирающим помехамU ном.

Часто используют не абсолютные знач. напряжений max допустимых помех повходу, а их отношение к min переходу напряж. AUMIN на выходе эл-та при егопереключении.

К°Лном.ст. = (и°Лном) / (aumin) - коэф. статической помехоустойчивости.

Статическая помехоустойчивость служит основным показателем защищенностимикросхем от помех. В справочниках приводят одну величину, u°hom или U°лном > ту, что меньше.

Динамическая помехоустойчивость выше, чем статическая, т.к. прикратковременных помехах сказываются поразительные емкости и инерционныепроцессы в микросхеме.

Динамическая помехоустойчивость в справочных данных не указывается, т.к.зависит не только от типа микросхемы, но и от условий ее разработки.

Энергия (работа) переключения - определяется как A=PnoT*t3AP.cp » гДе

рпом - средняя потребляемая мощность.

тзд..р.ср. - среднее время задержки распространения.

Параметр хар-ет качество разработки и исполнения микросхемы.

Для большинства семейств цифровых микросхем энергия переключения находится впределах от 0,1 - 500 пДж. Чем меньше этот параметр, тем выше качество разработки.С др. стороны для микросхем с высокой помехоустойчивостью большая энергияявляется благом, т.к. импульсы помех даже большей амплитуды, но недостаточнойэнергии не создают ложных срабатываний.

Надежность хар-ся 3 взаимосвязанными показаниями:

1) интенсивностью отказов X;

2) Наработкой на отказ Т;

3) Вероятностью безотказной работы P(t) в течение заданного времени t.

В ИС отсутствует перегрев, они мало подвержены вибрации и ударам, технологияпроизводства обеспечивает высокое кач-во продукции, и поэтому их надежность вомного раз выше, чем у изделий, собранных из отдельных деталей.

Интенсивность отказов определяется в ходе испытаний большой партии изделий ихар-ся выражением X=n/Nt, где п - число отказов в ходе испытаний; t - времяиспытаний; N - число используемых изделий в партии.

Интенсивность отказов для совр. микросхем А,= 10~8..10"9 (1/ч).

По этому параметру можно вычислить и остальные показания надежностиТ=1/Х, и P(t) = ext;

Принять X = 10"8 ч"1, a t = 15000 , можно найти, что вероятность безотказной работысоставляет P(t) = 0,998, т.е. -99,8%,это исключительно высокий показатель.

Стойкость микросхем к механич. и климатич. воздействиям очень высока.

Они способны работать норм, при интенсивных механич. Нагрузках и внеблагоприятных условиях: при повышенной влажности (до 98% при 25°С) и вбольшом температурном диапазоне (от -10 до +70°С для ИС широкого применения иот -60 до +125°С - специального).

Кроме того, когда это требуется, учитываются такие микросхемы, число изделий всерии, особые условия эксплуатации, возможность сопряжения с изделиями др. серийи др. показания.

Соседние файлы в папке лекции