Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
НГПО.doc
Скачиваний:
497
Добавлен:
25.11.2018
Размер:
9.22 Mб
Скачать

1.14. Регулирование работы поршневого насоса

Регулирование работы поршневого насоса, заключающееся а регулировании подачи и создаваемого давления, можно обеспечить следующим образом:

  1. Изменением площади поперечного сечения поршня. Для этого поршневой насос имеет комплект цилиндровых втулок с различными внутренними и постоянным наружным диаметрами, которые вставляются внутрь клапанной коробки и закрепляются лобовой крышкой поршневого насоса. При этом имеется соответствующий комплект поршней различного диаметра. Чем меньше диаметр поршня, тем меньше подача насоса и, соответственно, больше развиваемое давление. Недостаток этого способа регулирования заключается в том, что для изменения параметров работы насоса требуется его остановка и разборка части гидравлической коробки. Тем не менее, этот способ регулировки применяется на длительный срок работы насоса.

  2. Изменением числа двойных ходов поршня или оборотов приводного вала за счет:

-установки перед насосом коробки перемены передач (недостаток - ступенчатость регулирования и громоздкость конструкции);

  • изменения частоты вращения привода с двигателем внутреннего сгорания (недостаток - при плавном регулировании можно изменять частоту вращения ДВС лишь на 20 %, не меняя мощности привода);

  • изменения частоты вращения электродвигателя постоянного тока (это возможно в широких пределах, но, к сожалению, постоянный ток в промышленности применяется в основном на транспорте);

  • изменения частоты вращения электродвигателя переменного тока (для этого необходимы вентильный каскад, каскад Кремера, каскад генератор - двигатель; однако эти приспособления ведут к удорожанию работы поршневого насоса).

Изменение числа оборотов кривошипного вала - удобный способ регулирования, но на практике используется несколько вариантов в комплексе, что позволяет плавно менять подачу поршневого насоса.

3. Применением насоса без нагнетательного клапана в штоковой камере, что позволит уменьшить почти в два раза подачу поршневого насоса. При этом насос двойного действия будет работать как насос дифференциального действия; давление и степень неравномерности подачи не изменяются. Этот способ регулирования на практике применяется редко, при закачивании глубоких скважин, когда требуется уменьшить подачу насоса до минимума для уменьшения гидравлических сопротивлений движения жидкости в затрубном пространстве.

4. Изменением длины хода поршня (это возможно только в специальных дозировочных насосах, которые будут рассмотрены дополнительно).

1.15. Роторные насосы

Роторными насосами называются гидравлические машины, работающие, как и поршневые насосы, по принципу вытеснения жидкости.

В роторных насосах отделение напорной линии от всасывающей происходит путем одновременного замыкания трех основных частей насоса: статора (неподвижной части), ротора и замыкателей или вытеснителей. При этом вытеснителями могут быть шестерни, винты, поршеньки, пластинки, которые, вращаясь вместе с валом или ротором, вытесняют жидкость, поступающую в насос, в нагнетательную линию. Роторные насосы не нуждаются в клапанах.

Благодаря поочередному и непрерывному следованию одного вытеснителя за другим подача роторного насоса отличается большой равномерностью. К основным преимуществам роторных насосов, кроме того, относятся: сравнительно небольшие габариты и вес, простота конструкции и изготовления, способность работать при больших числах оборотов, благодаря чему возможно непосредственное соединение с электродвигателем, малая зависимость давления от подачи. Эти насосы находят применение, в основном, для перекачки вязких жидкостей и используются в качестве масляных, топливных, перекачивающих насосов и насосов для различных систем управления и автоматики. По виду вытеснителей роторные насосы могут быть шестеренными, винтовыми или пластинчатыми. Шестеренные насосы. Шестеренный насос состоит из двух находящихся в зацеплении шестерен, помещенных в плотно охватывающий их корпус (рис. 1.16.). Корпус имеет приемный А и на­гнетательный В патрубки; приемный патрубок расположен со стороны выхода зубьев шестерен из зацепления, а нагнетательный -на стороне входа их в зацепление.

Принцип действия насоса заключается в засасывании жидкости в межзубовые впадины, освобождаемые зубьями, выходящими из зацепления, и в вытеснении этой жидкости зубьями, входящими в зацепление. Жидкость, попавшая во впадину со стороны всасывающей полости, переносится в камеру нагнетания. Процессы всасывания и нагнетания происходят непрерывно в течение полного оборота шестерен. Находящиеся в зацеплении зубья шестерен представляют собой подвижное уплотнение, разделяющее полости всасывания и нагнетания. В шестеренных насосах применяют, главным образом, зубья с эвольвентным профилем, который нечувствителен к изменению расстояния между осями шестерен и прост в изготовлении.

С достаточной для практики точностью подачу насоса можно определить по формуле, м3/с:

, (1.17)

где Dн - диаметр начальной окружности шестерен, м;

т - модуль зацепления, м;

b - ширина шестерен, м;

п - число оборотов шестерен в минуту;

ηv- объемный КПД, учитывающий утечки.

Величина ηv находится в пределах 0,7...0,9, численное значение механического КПД находится в пределах 0,8...0,95. Шестерни насоса обычно исполняют одинакового диаметра с числом зубьев 8... 12. Шестерни выполняют прямозубыми, косозубыми и шевронными. Насосы применяют для подач в пределах 0,25...40 м3/час и напоров до 2...3 МПа. Шестеренные насосы применяют в гидросистемах агрегатов для подземного ремонта и как топливные в депарафинизационных агрегатах.

Винтовые насосы. Винтовые насосы обычно выполняют с одним, двумя, тремя или пятью винтами, при этом один винт ве­дущий, а остальные - ведомые. Винты многовинтовых насосов помещают в плотно охватывающий их кожух. Всасывающую и нагнетательную камеры помещают со стороны торцов винтов (рис. 1.17.).

Рис. 1.17. Устройство винтового насоса:

I — крышка корпуса; 2 - обойма роторов; 3 — ведомый ротор; 4 - нагнетательный патрубок; 5 — ведущий ротор; 6 - нажимная втулка уплотнительного сальника; 7 - корпус; 8 - опорная втулка ведущего ротора; 9 - ведомый ротор; I0 - всасывающий патрубок; 11 и 13 - разгрузочные поршни ведомого ротора; 12 -разгрузочный поршень ведущего ротора.

При вращении винтов в раскрывающуюся впадину винтового канала, находящуюся во всасывающей полости, поступает жидкость. При дальнейшем вращении винтов эта впадина замыкается и жидкость, находящаяся в ней, переносится к нагнетательной полости, где впадина размыкается, и жидкость, находящаяся между входящими в зацепление винтами, проталкивается в нагнетательный трубопровод.

Винтовые насосы имеют ряд преимуществ перед шестеренными: меньше габариты и вес, бесшумность работы, отсутствие перебалтывания перекачиваемой жидкости, способность к перекачиванию жидкостей с самой различной вязкостью, большое допустимое число оборотов. Наибольшее распространение имеют насосы трехвинтовые. Поверхность корпуса, в котором работают винты, заливают баббитом.

Винты выполняют двухзаходными, а направление винтовой нарезки ведущего винта - противоположно ведомым. Передаточное отношение между винтами равно единице. Развиваемый напор пропорционален длине винтов. Особенность винтовых насосов - возможность превращения их в гидравлические двигатели (турбины) путем подведения к ним жидкости под давлением. КПД винтовых насосов достигает 80...90 %. Они применяются для подач в пределах 1,5...500 м/ч при напорах до 17,5 МПа и скоростях вращения до 10000 об/мин. Подачу двухвинтового насоса с достаточной точностью можно подсчитать по приближенной формуле:

,

где D - внешний диаметр винта, м;

d - внутренний диаметр винта, м;

t - шаг винта, м; л - скорость вращения винта, об/мин.

Одновинтовые насосы отличаются простотой конструкции и могут перекачивать загрязненные и вязкие жидкости.

Подача трехвинтового насоса приблизительно в 1,5 раза больше подачи двухвинтового.

Рабочим органом одновинтового насоса служат однозаходный винт и резиновая обойма, внутренняя полость которой представляет двухзаходную винтовую поверхность с шагом в 2 раза большим шага винта. При вращении винта между ним и обоймой образуются свободные полости, куда засасывается перекачиваемая жидкость, которая перемещается вдоль оси насоса к полости нагнетания. При этом на всасывающей стороне создается вакуум, под действием которого жидкость всасывается в цилиндр.

Погружные одновинтовые насосы применяются в нефтяной промышленности для откачки из скважин высоковязкой нефти.

Пластинчатые (ротационные) насосы. Эти насосы широко применяют для подачи масел в гидравлических системах машин.

Ротор этого насоса (рис. 1.18.) имеет радиальные прорези, в которых расположены легко перемещающиеся рабочие лопатки в виде прямоугольных пластин.

При вращении ротора пластины прижимаются наружными торцами к внутренней поверхности корпуса, поочередно отсекая часть жидкости в пространстве между лопатками и вытесняя ее в напорный трубопровод.

Пластинки прижимаются к корпусу центробежной силой, пружинами или давлением жидкости, подводимой со стороны оси. Подача насоса определяется формулой:

Рис. 1.18. Схема пластинчатого насоса с

эксцентрично расположенным ротором

, (1.19)

где R - радиус корпуса;

- эксцентриситет ротора;

b - ширина лопатки вдоль оси:

n - скорость вращения, об/мин;

- объемный КПД насоса.

Пластинчатые насосы выполняют для подач в пределах 0,3... 12м3 давлений до 7 МПа при скорости вращения до 1500 об/мин. Снабжая крышки корпуса продолговатыми отверстиями и ползунами, в процессе работы насоса можно изменять величину эксцентриситета. Тем самым можно изменять подачу насоса.