
- •Нефтегазопромысловое оборудование
- •Предисловие
- •Тема 1 насосы объемного действия
- •1.1. Классификация поршневых насосов
- •1.2. Принцип работы поршневого насоса
- •1.3. Закон движения поршня насоса
- •1.4. Средняя подача поршневых насосов всех типов
- •1.5. Коэффициент подачи поршневых насосов, факторы на него влияющие
- •1.6. Графики подачи поршневых насосов
- •1.7. Воздушные колпаки
- •1.8. Работа насоса и индикаторная диаграмма
- •1.9. Мощность и кпд поршневого насоса. Определение мощности привода
- •1.10. Определение усилий на основные детали поршневых насосов
- •1.11. Конструкция поршневого насоса: основные узлы и детали
- •1.12. Скважинные поршневые насосы
- •1.13. Эксплуатация поршневых насосов
- •1.14. Регулирование работы поршневого насоса
- •1.15. Роторные насосы
- •1.16. Дозировочные насосы
- •1.17. Смазка узлов приводной части насоса
- •Тема 2 динамические насосы
- •2.1. Схема и принцип действия центробежного насоса
- •2.2. Основное уравнение центробежного насоса
- •2.3. Действительный напор центробежного насоса
- •2.4. Подача центробежного насоса
- •2.5. Мощность и коэффициент полезного действия центробежного насоса
- •2.6. Уравновешивание осевого давления
- •2.7. Явление кавитации и допустимая высота всасывания
- •2.8. Зависимость подачи, напора и мощности от числа оборотов насоса
- •2.9. Коэффициент быстроходности колеса насоса
- •2.10. Рабочая характеристика центробежного насоса
- •2.11. Определение рабочей характеристики насоса при изменении частоты вращения вала
- •2.12. Обточка рабочих колес по диаметру
- •2.13. Влияние плотности и вязкости перекачиваемой жидкости на работу насоса
- •2.14. Работа центробежного насоса в одинарный трубопровод
- •2.15. Работа насоса в разветвленный трубопровод
- •2.16. Параллельная работа центробежных насосов
- •2.17. Последовательная работа центробежных насосов
- •2.18. Регулирование параметров работы центробежного насоса
- •2.19. Эксплуатация центробежных насосов
- •2.20. Конструктивные особенности центробежных насосов Конструкция рабочих колес и отводов центробежного насоса
- •Уплотнения в насосе
- •2.21. Конструкция центробежного насоса серии цнс-180
- •2.22. Осевые насосы
- •2.23. Вихревые насосы
- •2.24. Струйные насосы
- •2.25. Назначение, схема и устройство насосного блока бкнс
- •2.26. Схема системы пттд с использованием погружного центробежного электронасоса
- •Тема 3 компрессоры
- •3.1. Принцип работы и термодинамические условия работы поршневого компрессора
- •3.2. Индикаторная диаграмма идеального рабочего процесса компрессора
- •3.3. Работа на сжатие единицы массы газа в компрессоре
- •3.4. Индикаторная диаграмма реального рабочего процесса компрессора
- •3.5. Подача поршневого компрессора, коэффициент подачи
- •3.6. Многоступенчатое сжатие Принцип получения высоких давлений в поршневом компрессоре
- •Индикаторная диаграмма двухступенчатого компрессора
- •3.7. Мощность и коэффициент полезного действия поршневого компрессора
- •3.8. Охлаждение компрессора, схема систем охлаждения
- •3.9. Принцип расчета системы охлаждения
- •3.10. Конструкции поршневых компрессоров
- •3.11. Основные узлы и детали компрессора
- •3.12. Системы смазки компрессора
- •3.13. Регулирование производительности поршневых компрессоров
- •3.14. Турбокомпрессоры. Принцип работы, схема
- •3.15. Особенности конструкции турбокомпрессора. Сравнение с поршневым компрессором
- •3.16. Характеристика турбокомпрессора
- •3.17. Винтовые компрессоры
- •3.18. Ротационные компрессоры
- •3.19. Газомотокомпрессоры
- •3.20. Эксплуатация поршневых компрессоров
- •3.21. Типы компрессоров, их применение
- •3.22. Компрессорная станция
- •3.23. Неисправности компрессоров
- •Тема 4 оборудование для эксплуатации скважин
- •4.1. Конструкции и обозначения обсадных труб
- •4.2. Назначение и конструкция колонных головок
- •4.3. Конструкция трубных головок
- •4.4. Фонтанная арматура
- •4.5. Запорные и регулирующие устройства фонтанной арматуры и манифольда
- •4.6. Монтаж и демонтаж фонтанной арматуры
- •4.7. Эксплуатация и ремонт фонтанной арматуры
- •4.8. Принцип работы газлифтного подъемника
- •4.9. Компрессорное оборудование при газлифтной эксплуатации скважин
- •4.10. Схема работы бескомпрессорной газлифтной установки
- •4.11. Внутрискважинное оборудование при газлифтной эксплуатации скважин
- •4.12. Схема шсну
- •4.13. Скважинные штанговые насосы
- •4.14. Режим работы скважинных насосов. Динамограммы работы
- •4.15. Подача шсну. Коэффициент подачи
- •4.16. Ремонт, хранение и транспортировка скважинных насосов
- •4.17. Насосные штанги: конструкция, условия работы
- •4.18. Расчет и конструирование колонны штанг
- •4.19. Утяжеленный низ колонны штанг
- •4.20. Эксплуатация, транспортировка и хранение штанг
- •4.21. Насосно-компрессорные трубы
- •4.22. Расчет колонны насосно-компрессорных труб
- •4.23. Кинематика станка-качалки
- •4.24. Силы, действующие в точке подвеса штанг
- •4.25. Принцип уравновешивания станка-качалки
- •4.26. Грузовое уравновешивание станка-качалки
- •4.27. Крутящий момент на кривошипе станка-качалки
- •4.28. Мощность электродвигателя станка-качалки
- •4.29. Коэффициент полезного действия штанговой насосной установки
- •Ориентировочные значения кпд отдельных систем
- •4.30. Подбор оборудовании для штанговой насосной установки
- •4.31. Устьевое оборудование шсну
- •4.33. Основные типы балансирных стан ков-качалок
- •4.34. Канатная подвеска станка-качалки
- •4.35. Монтаж станка-качалки
- •4.36. Техника безопасности при эксплуатации скважин штанговыми насосами
- •4.37. Эксплуатация балансирных станков-качалок
- •4.38. Схема уэцн
- •4.40. Конструкция электроцентробежного насоса
- •4.41. Гидрозащита электродвигателя
- •4.42. Система токоподвода
- •4.43. Конструкция электродвигателя
- •4.44. Монтаж установки погружных эцн
- •4.45. Обслуживание установок погружных эцн
- •4.46. Назначение и конструкция обратного и спускного клапанов
- •4.47. Компоновка погружного агрегата электровинтовой насосной установки
- •4.48. Конструкция скважинного винтового насоса
- •4.49. Принципиальные схемы закрытой и открытой гпну
- •4.50. Принцип действия гидропоршневого насосного агрегата (гпна)
- •4.51. Схема работы и принцип действия диафрагменного насоса
- •4.52. Схема работы и принцип действия струйного насоса
- •4.53. Скважинный струйный насос
- •Тема 5 оборудование и инструмент для ремонта скважин
- •5.1. Классификация видов ремонтов и операций, проводимых в скважинах
- •5.2. Талевая система
- •5.3. Инструмент для проведения спуско-подьемных операций (стто)
- •Элеваторы
- •Спайдеры
- •5.4. Роторные установки
- •5.5. Трубные и штанговые механические ключи
- •5.6. Порядок проведения спуско-подъемных операций с применением апр
- •5.7. Подъемные лебедки
- •5.8. Подъемные агрегаты
- •5.9. Вертлюги
- •5.10. Противовыбросовое оборудование
- •5.11. Винтовой забойный двигатель
- •5.12. Ловильный инструмент
- •Тема 6 оборудование для технологических процессов
- •6.1. Насосные установки
- •6.2. Смесительные установки
- •6.3. Автоцистерны
- •6.4. Устьевое и вспомогательное оборудование
- •6.5. Оборудование для депарафинизации скважин
- •6.6. Оборудование для исследования скважин
- •6.7. Эксплуатационные пакеры
- •6.8. Эксплуатационные якори
- •6.9. Расположение оборудования при солянокислотной обработке скважины
- •6.10. Расположение оборудования при гидравлическом разрыве пласта
- •6.11. Расположение оборудования при промывке скважины
- •Тема 7 оборудование для механизации работ
- •7.1. Трубовоз твэ-6,5-131а
- •7.2. Агрегат для перевозки штанг апш
- •7.3. Промысловые самопогрузчики
- •7.4. Агрегат атэ-6
- •7.5. Установка для перевозки кабеля упк-2000п
- •7.6. Агрегат 2парс
- •7.7. Агрегат аза-3
- •7.8. Агрегат 2арок
- •7.9. Агрегат для обслуживания и ремонта водоводов 2арв
- •7.10. Маслозаправщик мз-4310ск
- •Список литературы
- •Оглавление
- •Тема 1. Насосы объемного действия
- •Тема 2. Динамические насосы
- •Тема 4. Оборудование для эксплуатации скважин
- •Тема 5. Оборудование и инструмент для ремонта скважин
- •Тема 6. Оборудование для технологических процессов
- •Тема 7. Оборудование для механизации работ
4.51. Схема работы и принцип действия диафрагменного насоса
Скважинные диафрагменные насосы предназначены для работы в условиях больших пескопроявлений (значительного содержания механических примесей) или для откачки агрессивных жидкостей, так как перекачиваемая жидкость соприкасается только с клапанами, диафрагмой и стенками рабочей полости Подача УЭДН составляет 4...16м3/сут при напоре 650...1700м. Межремонтный период их при откачке агрессивных сред с массовым содержанием механических примесей до 1,8% существенно больше, чем межремонтные периоды скважинных штанговых насосов и ЭЦН.
Наиболее важной особенностью глубинных диафрагменных насосов является расположение всех его рабочих органов, кроме всасывающего и нагнетательного клапанов, в маслозаполненной герметичной камере. Эта камера отделена от добываемой жидкости гибкой диафрагмой. Таким образом, воздействию добываемой жидкости подвергается минимально возможное количество деталей глубинного насоса.
Схема диафрагменного насоса (рис. 4.76.) конструктивно объединяет насосные узлы с маслозаполненным асинхронным электродвигателем. С ротором электродвигателя жестко связана ведущая шестерня конического редуктора. На ведомой шестеренке смонтирован эксцентрик, создающий поступательное движение плунжеру насоса.
Рис. 4.76. Схема диафрагменного насоса:
1 -двигатель; 2 - конический редуктор; 3- кулачок-эксцентрик; 4 -рабочий плунжер; 5- клапанный регулятор работы диафрагмы; 6- диафрагма; 7-клапан насоса
Возвратное движение плунжера осуществляется с помощью цилиндрической пружины. Все камеры электродвигателя и насоса, вплоть до диафрагмы, заполнены жидким маслом. Для компенсации изменения объема масла при нагреве в нижней части двигателя имеется резиновый мешок-сильфон. Количество масла, закачиваемого рабочим поршнем под диафрагму, должно обеспечивать необходимую величину перемещения диафрагмы, зависящую от условий эксплуатации. Специальное клапанное устройство, связанное с движением диафрагмы насоса, автоматически регулирует объем закачиваемого масла. При лишнем количестве масла толкатель диафрагмы открывает клапан сброса масла, при недостаточном - клапан поступления масла. Шариковые всасывающий и нагнетательный клапаны диафрагменного насоса смонтированы в его головке. В этой же головке закреплены всасывающий и нагнетательный патрубки с пескоотделителем. Добываемая жидкость поступает к всасывающему патрубку через фильтр. Электродвигатель оснащен кабельным вводом для подсоединения специального кабеля. Система разборных уплотнений герметизирует основные узлы агрегата, упрощая его ремонт.
Наиболее ответственными узлами агрегата являются редуктор, диафрагма и клапаны.
4.52. Схема работы и принцип действия струйного насоса
В последние десятилетия ведутся активные поиски новых способов добычи нефти, особенно в области эксплуатации наклонных скважин. При использовании бесштанговых гидроприводных струйных насосных установок вместо УСШН в скважинах со значительной кривизной ствола энергетические затраты существенно снижаются, а межремонтный период (МРП) скважинного оборудования увеличивается. Компактность, высокие монтажеспособность, эффективность и степень унификации узлов позволяют применять гидроприводные насосные установки при эксплуатации кустовых скважин в труднодоступных районах Сибири и на морских месторождениях. Изменение условий эксплуатации многих нефтяных месторождений, связанное с увеличением числа объектов разработки в труднодоступных северных районах и на континентальном шельфе, вызвало возрождение интереса к струйным насосным установкам.
Струйные насосы являются разновидностью гидроприводных насосов и обладают всеми достоинствами этого вида оборудования. Благодаря своим конструктивным особенностям струйные аппараты отличаются высокой надежностью и эффективностью, особенно в осложненных условиях эксплуатации, например, при добыче пластовой жидкости со значительным содержанием механических примесей и коррозионно-активных веществ из наклонно направленных скважин.
К преимуществам струйных насосов относятся их малые габариты, большая пропускная способность и возможность стабильно отбирать пластовую жидкость с высоким содержанием свободного газа. Кроме того, проста конструкция установок, отсутствуют движущиеся детали, возможно исполнение струйного насоса в виде свободного, сбрасываемого агрегата.
Рис. 4.77. Схема струйного насоса (а) и движение жидкостей в нем (б): 1 — подвод откачиваемой жидкости; 2 - подвод рабочей жидкости: 3 - входное кольцевое сопло; 4—рабочее сопло; 5 — камера смешения; 6 - диффузор; I — невозмущенная откачиваемая жидкость; II - пограничный слой; III - невозмущенная рабочая жидкость (ядро)
В струйном насосе или инжекторе поток откачиваемой жидкости перемещается от забоя скважины до устья скважины за счет получения энергии от потока рабочей жидкости, подаваемого поверхностным силовым насосом с устья скважины. Нагнетание скважинкой жидкости осуществляется благодаря явлению эжекции в рабочей камере, т. с. смешению скважинной жидкости с рабочим потоком жидкости, обладающим большой энергией (рис. 4.77.).
Режим работы струйного насоса характеризуется следующими параметрами: рабочий напор НР, затрачиваемый в насосе и равный разности напоров рабочего потока на входе в насос (сечение В—В) и на выходе из него (сечение С—С), полезный напор НП, создаваемый насосом и равный разности напоров подаваемой жидкости за насосом (сечение С—С) и перед ним (сечение А—А); расход рабочей жидкости Q1, полезная подача Q0. КПД струйного насоса равен отношению полезной мощности к утраченной и может достигать величины, равной 20...35 %:
.
Такое значение КПД струйных насосов обусловлено большими потерями энергии, сопровождающими рабочий процесс: в камере смешения (на вихреобразование и гидравлическое трение жидкости о стенки камеры); в элементах насоса, подводящих и отводящих жидкость (в рабочем и кольцевом соплах и диффузоре).
Струйный насос работает следующим образом. При истечении рабочей жидкости со скоростью V1 из сопла в затопленное пространство сразу за передним срезом сопла на поверхности струи возникает область смешения. Быстрые частицы проникают в окружающий медленный поток невозмущенной жидкости, подсасываемый через кольцевой проход в камеру со скоростью V0, и передают ей энергию. Этот процесс, основанный на интенсивном вихреобразовании, происходит в непрерывно утолщающемся по длине струйном пограничном слое. Вместе с тем, внутренняя область рабочей струи, а именно ее ядро и внешняя область невозмущенной подсасываемой жидкости, постоянно уменьшается и на расстоянии L от рабочего сопла потоки рабочей и откачиваемой жидкостей уже полностью перемешаны. На дальнейшем участке камеры смешения происходит только выравнивание профиля скоростей потока жидкости. Чаще всего в струйных насосах применяются цилиндрические камеры смешения, технологически простые в изготовлении, обеспечивающие относительно высокий КПД. Для преобразования достаточно высокой скорости потока в камере смешения в давление поток направляется в диффузор.