
- •1.Представление о белках как важнейшем классе органичских веществ и структурно-функциональном компоненте организма человка.
- •2.Аминокислоты,входящие в состав белков,их строение и свойства. Пептидная связь. Первичная структура белков. Зависимость биологических свойств от первичной структкры.
- •4. Четвертичная стуктурабелков. Особенности строения и функционирования олигомерных белков на примере гемсодержащих белков и их денатурация.
- •6.Многообразие белков. Глобулярные и фибриллярные белки.
- •4. Соотношение полярных и неполярных групп на поверхности нативных молекул белков
- •5. Растворимость белков
- •22.Строение нуклеиновых кислот. Связи, формирующие структуру днк, рнк. Строение хроматина и рибосом.
- •25 Транскрипция
- •26. Трансляция
- •27. Свойства биологического кода.
- •28. Теория оперона. Функционирование оперонов, регулируемых по механизму индукции и репрессии.
- •29. Молекулярные механизмы генетической изменчивости. Молекулярные мутации: замены,делеции,вставки нуклеотидов
- •30.Основные пищевые вещества-углеводы, жиры, белки,суточная потребность.
- •31. Незаменимые аминокислоты: пищевая ценность разных белков
- •32. Витамины. Классификация витаминов.
- •1. Витамины, растворимые в жирах
- •3. Витаминоподобные в вещества
- •33.Функции витаминов. Алиментарные и вторичные авитаминозы гиповитаминозы. Гипервитаминоз.
- •34. Витаминзависимые и витаминрезистентные состояния.
- •35. Биохимическая характеристика патогенеза рахита
- •36. Биохимическая характеристика гипервитаминозов а и д
- •37. Понятие о метаболизме,метаболических путях. Ферменты и метаболизм. Понятие регуляции метаболизма.
- •39.Основные мембраны клетки и их функции. Общие свойства мембран:жидкостность, поперечная ассиметрия, избирательная проницаемость
- •40. Липидный состав мембран- фосфолипиды, гликолипиды, холестерин.
- •41. Роль липидов в формировании бислоя.
- •42. Участие фосфолипаз в обмене фосфолипидов.
- •43. Белки мембран: интегральные, поверхностные, заякоренные.
- •46. Эндэргонические и экзэргоническиг реакции в живой клетке. Макроэргические соединения.
- •50. Окислительное фосфорилирование, коэффициент p/о.
- •51. Строение митохондрий и структурная организация дыхательной цепи.
- •52. Разобщение тканевого дыхания и окислительного фосфорилирования. Терморегуляторные функции тканевого дыхания.
- •53. Нарушения энергетического обмена: гипоэнергетические состояния как результат гипоксии, гипоавитаминоза и др. Причин.
- •55. Цикл лимонной кислоты.
- •56.Механизмы регуляции цитратного цикла
- •57 Основные углеводы животных,их содержание в тканях, биологическая роль. Основные углеводы пищи. Преваривание углеводов.
- •58.Глюкоза как важн. Метаболит углеводного обмена:общая схема источников и путей расходования глюкозы в организма.
- •59. Катаболизм глюкозы. Аэробный распад
- •60Распространение и физиологическое значение аэробного распада глюкозы.
- •62Аэробный распад глюкозы.Гликолитическая оксидоредукция
- •63. Распространение и физ значение анаэробного распада глюкозы
- •64.Биосинтез глюкозы.
- •65. Цикл Кори
- •66. Представление о пентозофосфатном пути превращения глюкозы
- •70.Роль инсулина ,глюкагона,адреналина в обмене ув
- •73.Важнейшие липиды тканей человека. Резервные липиды и липиды мембран.
- •74.Жирные кислоты липидов тканей человека.
- •75.Эссенциальные жирные кислоты:омега6,3-кислоты как предшественники синтеза эйкозаноидов.
- •76. Биосинтез жирных кислот.
- •78.Биосинтез и использование кетоновых тел в качестве источника энергии
- •80.Ресинтез трацилглицеридов в стенке кишечника. Образование хиломикронов. Транспорт жиров.
- •82.Состав и строение транспортных липопротеидов крови
- •83.Депонирование и мобилизация жиров: регуляция синтеза и мобилизация жиров. Роль инсулина ,глюкагона и адреналина.
- •84.Основные фосфолипиды и гликолипиды тканей человека. Глицерофосфолипиды.
- •85.Обмен стероидов. Холестерин как предшественник ряда других стероидов. Представление о биосинтезе холестерина
- •86. Выведение желчных кислот и холестерина из организма
- •104.Роль гормонов в системе регуляции метаболизма. Клетки-мишени и клеточные рецепторы гормонов.
- •105. Механизмы передачи гормональных сигналов в клетке.
- •1. Передача гормональных сигналов через мембранные рецепторы
- •2. Передача сигналов через внутриклеточные рецепторы
- •106. Классификация гормонов по биологическому строению и биологическим функциям.
- •107.Изменение гормонального статуса и метаболизма при сахарном диабете.
- •108. Патогенез основных симптомов сахарного диабета
- •109. Регуляция водно-солевого обмена. Строение и функции альдостерона и вазопрессина.
- •110.Система ренин-ангиотензин-альдостерон. Биохимические механизмы возникновения почечной гипертонии.
- •111.Роль гормонов в регуляции обменов кальция и фосфатов.
- •112. Причины и проявления рахита, гипо и гиперпаратироидизма.
- •113. Изменение метаболизма при гипо и гипертиреозе.
- •114. Половые гормоны: строение,влияние на обмен веществ.
- •115.Распад гема
- •116.Нарушение обмена билирубина
- •117.Диагностическое значение определения билирубина
- •118.Токсичность кислорода:образование активных форм
- •119. Повреждение мембран в результате перекисного окисления липидов.
- •120.Полиморфные формы гемоглобина
- •122.Распад Гемма.Обезвреживание билирубина
- •Этапы метаболизма билирубина в организме
- •Превращение в кишечнике
- •123.Нарушение обмена билирубина:желтухи
- •124.Основные свойства белковых фракций крови и значение их определения для диагностики заболеваний. Энзимодиагностика.
- •125. Коллаген: особенности аминокислотного состава, первичной и пространственной структуры.
- •127.Гликозаминогликаны и протеогликаны. Строение и функции.
- •128. Особенности энергетического обмена в мышцах. Креатинфосфат.
- •130.Медиаторы:катехоламины,серотонин,гамма-аминомасляная кислота,глутаминовая кислота,глицин,гистамин.
127.Гликозаминогликаны и протеогликаны. Строение и функции.
Гликозаминогликаны - линейные отрицательно заряженные гетерополисахариды. Протеогликаны - высокомолекулярные соединения, состоящие из белка (5-10%) и гликозаминогликанов (90-95%). Они образуют основное вещество межклеточного матрикса соединительной ткани и могут составлять до 30% сухой массы ткани. Белки в протеогликанах представлены одной полипептидной цепью разной молекулярной массы. Полисахаридные компоненты у разных протеогликанов разные. Гликозаминогликаны и протеогликаны, являясь обязательными компонентами межклеточного матрикса, играют важную роль в межклеточных взаимодействиях, формировании и поддержании формы клеток и органов, образовании каркаса при формировании тканей. Благодаря особенностям своей структуры и физико-химическим свойствам, протеогликаны и гликозаминогликаны могут выполнять в организме человека следующие функции:
-
они являются структурными компонентами межклеточного матрикса;
-
протеогликаны и гликозаминогликаны специфически взаимодействуют с коллагеном, эластином, фибронектином, ламинином и другими белками межклеточного матрикса;
-
все протеогликаны и гликозаминогликаны, являясь полианионами, могут присоединять, кроме воды, большие количества катионов (Na+, K+, Са2+) и таким образом участвовать в формировании тургора различных тканей;
-
протеогликаны и гликозаминогликаны играют роль молекулярного сита в межклеточном матриксе, они препятствуют распространению патогенных микроорганизмов;
-
гиалуроновая кислота и протеогликаны выполняют рессорную функцию в суставных хрящах;
-
гепарансульфатсодержащие протеогликаны способствуют созданию фильтрационного барьера в почках;
-
кератансульфаты и дерматансульфаты обеспечивают прозрачность роговицы;
-
гепарин - антикоагулянт;
-
гепарансульфаты - компоненты плазматических мембран клеток, где они могут функционировать как рецепторы и участвовать в клеточной адгезии и межклеточных взаимодействиях. Они также выступают компонентами синаптических и других пузырьков.
128. Особенности энергетического обмена в мышцах. Креатинфосфат.
Важнейшей функцией мышечного волокна является сократительная. Процесс сокращения и расслабления связан с потреблением АТФ(АТР), гидролиз которого катализирует миозин-АТФ-аза Однако небольшой запас АТФ, имеющийся в мышцах, расходуется менее чем за 1 с после стимуляции.
Потребности работающей мышцы в АТФ удовлетворяются за счет следующих ферментативных реакций:
1. Резерв в виде креатинфосфата. Быстрая регенерация АТФ может быть достигнута за счет переноса фосфатной группыкреатинфосфата на АДФ (ADP) в реакции, катализируемой креатинкиназой . В спокойном состоянии креатинфосфат вновь синтезируется из креатина. При этом фосфатная группа присоединяется по гуанидиновой группе креатина (N-гуанидино-N-метилглицина). Креатин, в основном накапливается в мышцах. Здесь креатин медленно циклизуется за счет неферментативной реакции с образованием креатинина, который поступает в почки и удаляется из организма
2 Анаэробный гликолиз. В мышечной ткани наиболее важным долгосрочным энергетическим резервом является гликоген В покоящейся ткани содержание гликогена составляет до 2% от мышечной массы. При деградации под действием фосфорилазыгликоген легко расщепляется с образованием глюкозо-6-фосфата, который при последующем гликолизе превращается в пируват. При большой потребности в АТФ и недостаточном поступлении кислорода пируват за счет анаэробного гликолиза восстанавливается вмолочную кислоту (лактат), которая диффундирует в кровь
3. Окислительное фосфорилирование. В аэробных условиях образующийся пируват поступает в митохондрии, где
4. Образование инозинмонофосфата Другим источником быстрого восстановления уровня АТФ является конверсия АДФв АТФ и АМФ (AMP), катализируемая аденилаткиназой (миокиназой) . Образовавшийся АМФ за счет дезаминирования частично превращается в ИМФ (инозинмонофосфат) , что сдвигает реакцию в нужном направлении.
Из всех способов синтеза АТФ наиболее продуктивным является окислительное фосфорилирование. За счет этого процесса обеспечиваются потребности в АТФ постоянно работающей сердечной мышцы (миокарда). Вот почему для успешной работы сердечной мышцы обязательным условием является достаточное снабжение кислородом (инфаркт миокарда — это следствие перебоев в поступлении кислорода).
В высокоактивных (красных) скелетных мышцах источником энергии для рефосфорилирования АДФ служит окислительное фосфорилирование в митохондриях. В обеспечении этих мышц кислородом принимает участие миоглобин (Mb) - близкий гемоглобинубелок, обладающий свойством запасать кислород. В малоактивных скелетных мышцах, лишенных красного миоглобина и поэтому белых, главным источником энергии для восстановления уровня АТФ является анаэробный гликолиз. Такие мышцы сохраняют способность к быстрым сокращениям, однако они могут работать лишь короткое время, поскольку при гликолизе образование АТФ идет с низким выходом. Спустя некоторое время мышцы истощаются в результате изменения рН в мышечных клетках.
Расщепление гликогена контролируется гормонами Процесс гликогенолиза стимулируется адреналином (через b-рецепторы) за счет образования цАМФ и активации киназы фосфорилазы. Активация фосфорилазы наступает также при увеличенииконцентрации ионов Са2+ во время мышечного сокращения.
Биохимия нервной системы.