
- •1.Представление о белках как важнейшем классе органичских веществ и структурно-функциональном компоненте организма человка.
- •2.Аминокислоты,входящие в состав белков,их строение и свойства. Пептидная связь. Первичная структура белков. Зависимость биологических свойств от первичной структкры.
- •4. Четвертичная стуктурабелков. Особенности строения и функционирования олигомерных белков на примере гемсодержащих белков и их денатурация.
- •6.Многообразие белков. Глобулярные и фибриллярные белки.
- •4. Соотношение полярных и неполярных групп на поверхности нативных молекул белков
- •5. Растворимость белков
- •22.Строение нуклеиновых кислот. Связи, формирующие структуру днк, рнк. Строение хроматина и рибосом.
- •25 Транскрипция
- •26. Трансляция
- •27. Свойства биологического кода.
- •28. Теория оперона. Функционирование оперонов, регулируемых по механизму индукции и репрессии.
- •29. Молекулярные механизмы генетической изменчивости. Молекулярные мутации: замены,делеции,вставки нуклеотидов
- •30.Основные пищевые вещества-углеводы, жиры, белки,суточная потребность.
- •31. Незаменимые аминокислоты: пищевая ценность разных белков
- •32. Витамины. Классификация витаминов.
- •1. Витамины, растворимые в жирах
- •3. Витаминоподобные в вещества
- •33.Функции витаминов. Алиментарные и вторичные авитаминозы гиповитаминозы. Гипервитаминоз.
- •34. Витаминзависимые и витаминрезистентные состояния.
- •35. Биохимическая характеристика патогенеза рахита
- •36. Биохимическая характеристика гипервитаминозов а и д
- •37. Понятие о метаболизме,метаболических путях. Ферменты и метаболизм. Понятие регуляции метаболизма.
- •39.Основные мембраны клетки и их функции. Общие свойства мембран:жидкостность, поперечная ассиметрия, избирательная проницаемость
- •40. Липидный состав мембран- фосфолипиды, гликолипиды, холестерин.
- •41. Роль липидов в формировании бислоя.
- •42. Участие фосфолипаз в обмене фосфолипидов.
- •43. Белки мембран: интегральные, поверхностные, заякоренные.
- •46. Эндэргонические и экзэргоническиг реакции в живой клетке. Макроэргические соединения.
- •50. Окислительное фосфорилирование, коэффициент p/о.
- •51. Строение митохондрий и структурная организация дыхательной цепи.
- •52. Разобщение тканевого дыхания и окислительного фосфорилирования. Терморегуляторные функции тканевого дыхания.
- •53. Нарушения энергетического обмена: гипоэнергетические состояния как результат гипоксии, гипоавитаминоза и др. Причин.
- •55. Цикл лимонной кислоты.
- •56.Механизмы регуляции цитратного цикла
- •57 Основные углеводы животных,их содержание в тканях, биологическая роль. Основные углеводы пищи. Преваривание углеводов.
- •58.Глюкоза как важн. Метаболит углеводного обмена:общая схема источников и путей расходования глюкозы в организма.
- •59. Катаболизм глюкозы. Аэробный распад
- •60Распространение и физиологическое значение аэробного распада глюкозы.
- •62Аэробный распад глюкозы.Гликолитическая оксидоредукция
- •63. Распространение и физ значение анаэробного распада глюкозы
- •64.Биосинтез глюкозы.
- •65. Цикл Кори
- •66. Представление о пентозофосфатном пути превращения глюкозы
- •70.Роль инсулина ,глюкагона,адреналина в обмене ув
- •73.Важнейшие липиды тканей человека. Резервные липиды и липиды мембран.
- •74.Жирные кислоты липидов тканей человека.
- •75.Эссенциальные жирные кислоты:омега6,3-кислоты как предшественники синтеза эйкозаноидов.
- •76. Биосинтез жирных кислот.
- •78.Биосинтез и использование кетоновых тел в качестве источника энергии
- •80.Ресинтез трацилглицеридов в стенке кишечника. Образование хиломикронов. Транспорт жиров.
- •82.Состав и строение транспортных липопротеидов крови
- •83.Депонирование и мобилизация жиров: регуляция синтеза и мобилизация жиров. Роль инсулина ,глюкагона и адреналина.
- •84.Основные фосфолипиды и гликолипиды тканей человека. Глицерофосфолипиды.
- •85.Обмен стероидов. Холестерин как предшественник ряда других стероидов. Представление о биосинтезе холестерина
- •86. Выведение желчных кислот и холестерина из организма
- •104.Роль гормонов в системе регуляции метаболизма. Клетки-мишени и клеточные рецепторы гормонов.
- •105. Механизмы передачи гормональных сигналов в клетке.
- •1. Передача гормональных сигналов через мембранные рецепторы
- •2. Передача сигналов через внутриклеточные рецепторы
- •106. Классификация гормонов по биологическому строению и биологическим функциям.
- •107.Изменение гормонального статуса и метаболизма при сахарном диабете.
- •108. Патогенез основных симптомов сахарного диабета
- •109. Регуляция водно-солевого обмена. Строение и функции альдостерона и вазопрессина.
- •110.Система ренин-ангиотензин-альдостерон. Биохимические механизмы возникновения почечной гипертонии.
- •111.Роль гормонов в регуляции обменов кальция и фосфатов.
- •112. Причины и проявления рахита, гипо и гиперпаратироидизма.
- •113. Изменение метаболизма при гипо и гипертиреозе.
- •114. Половые гормоны: строение,влияние на обмен веществ.
- •115.Распад гема
- •116.Нарушение обмена билирубина
- •117.Диагностическое значение определения билирубина
- •118.Токсичность кислорода:образование активных форм
- •119. Повреждение мембран в результате перекисного окисления липидов.
- •120.Полиморфные формы гемоглобина
- •122.Распад Гемма.Обезвреживание билирубина
- •Этапы метаболизма билирубина в организме
- •Превращение в кишечнике
- •123.Нарушение обмена билирубина:желтухи
- •124.Основные свойства белковых фракций крови и значение их определения для диагностики заболеваний. Энзимодиагностика.
- •125. Коллаген: особенности аминокислотного состава, первичной и пространственной структуры.
- •127.Гликозаминогликаны и протеогликаны. Строение и функции.
- •128. Особенности энергетического обмена в мышцах. Креатинфосфат.
- •130.Медиаторы:катехоламины,серотонин,гамма-аминомасляная кислота,глутаминовая кислота,глицин,гистамин.
78.Биосинтез и использование кетоновых тел в качестве источника энергии
Ацетоацетат и 3-гидроксибутират в норме играют роль топлива и являются важным источником энергии. Кетоновые тела поступают в кровь и могут использоваться как источники энергии в других тканях.
Образовавшийся ацетил-КоА далее вступает в цитратный цикл. При этом в связи отсутствием в печени 3-кетоацил-КоА-трансферазы сама печень не способна использовать ацетоацетат в качестве источника энергии, снабжая им те или другие органы. Т.О. ацетоацетат можно рассматривать как водорастворимую транспортную форму ацетильных компонентов.
В норме кетоновые тела в крови человека отсутствуют или их концентрация невелика (~ 3 мг/дл). Содержание кетоновых тел увеличивается в таких состояниях, когда источником энергии для организма служат жирные кислоты – при длительной мышечной работе, при голодании, при некоторых болезнях. Через двое суток голодания концентрация кетоновых тел в крови достигает 5-6 мг/дл, через неделю – 40-50 мг/дл. При сахарном диабете концентрация кетоновых тел может повышаться до 300-400 мг/дл, что приводит к метаболическому ацидозу.
79.Пищевые жиры и их переваривание. Всасывание продуктов переваривания. Нарушения переваривания и всасывания.
Нарушения переваривания и всасывания жиров. Стеаторея
Нарушение переваривания жиров может быть следствием нескольких причин. Одна из них - нарушение секреции жёлчи из жёлчного пузыря при механическом препятствии оттоку жёлчи. Это состояние может быть результатом сужения просвета жёлчного протока камнями, образующимися в жёлчном пузыре, или сдавлением жёлчного протока опухолью, развивающейся в окружающих тканях. Уменьшение секреции жёлчи приводит к нарушению эмульгирования пищевых жиров и, следовательно, к снижению способности панкреатической липазы гидролизовать жиры.
80.Ресинтез трацилглицеридов в стенке кишечника. Образование хиломикронов. Транспорт жиров.
Образование хиломикронов
Жиры, образовавшиеся в результате ресинтеза в клетках слизистой оболочки кишечника, упаковываются в ХМ. Основной апопротеин в составе ХМ - белок апоВ-48. Этот белок закодирован в том же гене, что и белок ЛПОНП - В-100 который синтезируется в печени. В кишечнике в результате посттранскрипционных превращений "считывается" последовательность мРНК, которая кодирует только 48% от длины белка В-100, поэтому этот белок называется апоВ-48. Белок апоВ-48 синтезируется в шероховатом ЭР и там же гликозилируется. Затем в аппарате Гольджи происходит формирование ХМ, называемых "незрелыми". По механизму экзоцитоза они выделяются в хилус, образующийся в лимфатической системе кишечных ворсинок, и через главный грудной лимфатический проток попадают в кровь. В лимфе и крови с ЛПВП на ХМ переносятся апопротеины Е (апоЕ) и С-П (апоС-П); ХМ превращаются в "зрелые". ХМ имеют довольно большой размер, поэтому после приёма жирной пищи они придают плазме крови опалесцирующий, похожий на молоко, вид. ХМ транспортируют жир к различным тканям, где он утилизируется, поэтому концентрация ХМ в крови постепенно снижается, и плазма опять становится прозрачной. ХМ исчезают из крови в течение нескольких часов.
Рис. 8-20. Путь экзогенных жиров и хиломикронов. *ЛПЛ - липопротеинлипаза, ЖК - жирные кислоты.