
- •Общие сведения
- •Краткое содержание
- •Практикум
- •Тема 1. Векторная алгебра.
- •1.1. Понятие вектора и линейные операции над векторами.
- •1.1.1. Понятие вектора.
- •1.1.2. Линейные операции над векторами.
- •Свойства сложения векторов:
- •1.1.3. Понятие линейной зависимости векторов.
- •1.1.4. Линейные комбинации двух векторов.
- •Доказательство.
- •1.1.5. Линейные комбинации трех векторов.
- •Доказательство.
- •1.1.6. Линейная зависимость четырех векторов.
- •1.1.7. Понятие базиса. Аффинные координаты.
- •1.1.8. Проекция вектора на ось.
- •1.1.9. Декартова прямоугольная система координат в пространстве. (дпск)
- •1.2. Скалярное произведение двух векторов.
- •1.2.1. Определение скалярного произведения (сп).
- •1.2.2. Геометрические свойства сп.
- •Доказательство.
- •1.2.3. Алгебраические свойства сп.
- •1.2.4. Выражение скалярного произведения (сп) в декартовых прямоугольных координатах (дпк).
- •1.3. Векторное произведение двух векторов.
- •1.3.1. Правые и левые тройки векторов и системы координат.
- •1.3.2. Векторное произведение двух векторов (вп).
- •1.3.3. Геометрические свойства вп.
- •1.3.4. Алгебраические свойства векторного произведения (вп).
- •1.3.5. Понятие матрицы и определителя второго и третьего порядка.
- •1.3.6. Выражение векторного произведения (вп) в декартовых прямоугольных координатах (дпк).
- •1.3.7. Смешанное произведение трех векторов.
- •1.3.8. Выражение смешанного произведения в декартовых координатах.
- •1.4. Уравнение линии на плоскости.
- •1.4.1.Параметрическое представление линии.
- •1.4.2.Уравнение линии в полярных координатах.
- •1.4.3. Пересечение двух линий.
- •1.4.4. Уравнение поверхности и уравнение линии в пространстве.
- •1.5. Различные виды уравнений прямой на плоскости.
- •1.5.1. Общее уравнение прямой.
- •1.5.2. Уравнение прямой с угловым коэффициентом.
- •1.5.3. Уравнение прямой в отрезках.
- •1.5.4. Каноническое уравнение прямой.
- •1.5.5. Параметрические уравнения прямой.
- •1.5.6. Угол между двумя прямыми. Условия параллельности и перпендикулярности двух прямых.
- •1.5.7. Нормированное уравнение прямой. Отклонение точки от прямой.
- •1.5.8. Приведение общего уравнения прямой к нормированному виду.
- •Тема 2. Геометрия на плоскости и в пространстве. Общие сведения
- •Краткое содержание
- •Практикум
- •Тема 2. Кривые второго порядка.
- •2.1. Эллипс.
- •2.1.1. Определение эллипса и вывод его канонического уравнения.
- •2.1.2. Исследование формы эллипса.
- •2.1.3. Эксцентриситет и фокальные радиусы эллипса.
- •2.2. Гипербола.
- •2.2.1. Определение гиперболы и вывод ее канонического уравнения.
- •2.2.2. Исследование формы гиперболы.
- •Асимптоты гиперболы
- •Равнобочная гипербола
- •Сопряженная гипербола
- •2.2.3. Эксцентриситет и фокальные радиусы гиперболы.
- •Фокальные радиусы
- •2.3. Парабола.
- •2.3.1. Определение параболы и ее уравнение.
- •2.3.2. Исследование формы параболы.
- •2.4. Общее свойство кривых второго порядка - эллипса, гиперболы и параболы.
- •2.4.1. Директриса эллипса гиперболы и параболы.
- •2.4.2. Полярное уравнение кривой второго порядка.
- •Тема 3. Вещественные и комплексные числа. Общие сведения
- •Краткое содержание
- •Практикум
- •3.1. Плоскость как поверхность первого порядка.
- •3.2. Неполные уравнения плоскости.
- •3.3. Уравнение плоскости в отрезках.
- •3.4. Нормальное уравнение плоскости. Расстояние от точки до плоскости.
- •3.5. Уравнение прямой в пространстве.
- •3.6. Направляющий вектор прямой. Канонические уравнения прямой. Параметрические уравнения прямой.
- •3.7. Некоторые дополнительные предложения и примеры.
- •Тема 4. Числовые последовательности. Общие сведения
- •Прямое произведение двух множеств.
- •4.1.2.Вещественные числа и их изображение на числовой оси. Основные свойства рациональных чисел.
- •Измерение отрезков числовой оси.
- •4.1.3. Ограниченные множества вещественных чисел.
- •Теорема 1.
- •4.1.4. Некоторые конкретные множества вещественных чисел.
- •4.2. Теория последовательностей.
- •4.2.1. Понятие числовой последовательности.
- •4.2.2. Бесконечно большие и бесконечно малые последовательности.
- •Примеры.
- •4.2.3. Основные теоремы о бесконечно малых последовательностях.
- •4.2.4. Сходящиеся последовательности. Основные определения.
- •Определение 2.
- •4.2.5. Основные свойства сходящихся последовательностей.
- •4.2.6. Арифметические свойства сходящихся последовательностей.
- •4.2.7. Монотонные последовательности.
- •4.2.8. Число е.
- •4.2.9. Предельный переход в неравенствах.
- •Следствие 1.
- •4.2.10. Подпоследовательности числовых последовательностей.
- •4.2.11. Предельные точки последовательности.
- •4.3. Понятие функции. Предел функции. Непрерывность.
- •4.3.1. Определение функции. Определение 1.
- •4.3.2. Способы задания функций.
- •4.3.3. Монотонные функции.
- •4.3.4. Сложная функция.
- •4.3.5. Обратная функция.
- •4.3.8. Односторонние пределы.
- •4.3.9. Пределы на бесконечности.
Прямое произведение двух множеств.
Пусть имеются два множества А и В и пусть аА, bB. Совокупность всевозможных упорядоченных пар (а,b) составляет новое множество, называемое прямым произведением А и В. Прямое произведение обозначается АВ.
4.1.2.Вещественные числа и их изображение на числовой оси. Основные свойства рациональных чисел.
Основным понятием математики являются числа натурального ряда:
которые
появились в результате счета предметов.
Целые числа :
Рациональным числом
называется число, представимое в виде
отношения двух целых чисел
(q0;
p и q- целые числа).
Отметим при этом, что
одно и то же рациональное число представимо
в виде отношения различных целых чисел
.
Множество всех рациональных чисел будем
обозначать через Q, тогда
В курсе элементарной математики вводились определения операций сложения и умножения рациональных чисел, давалось правило сравнения этих чисел, доказывались простейшие свойства.
Поэтому перечислим без доказательства основные свойства рациональных чисел, вытекающие из соответствующих свойств целых чисел.
Главную роль среди свойств играют три правила:
-
правило сравнения;
-
правило образования суммы;
-
правило образования произведения.
I. Правило сравнения: любые два рациональные числа а и b связаны одним и только одним из трех знаков , причем если аb, то b а.
Правило сравнения
рациональных чисел формулируется так:
два неотрицательных рациональных числа
связаны
тем же знаком, что и два целых числа
;
два неположительных рациональных числа
а и b связаны тем же знаком, что и два
неотрицательных числа b
и а
; если а - неотрицательное, а b - отрицательное
число, то аb.
Правило сравнения обладает следующим свойством:
1. (из аb и bс) ас (свойство транзитивности знака );
(из а=b и b=с) а=с (свойство транзитивности знака =).
II. Правило образования сумм.
Существует правило, посредством которого любым двум рациональным числам а и b ставится в соответствие определенное рациональное число с, называемое их суммой и обозначаемое символом с=а+b.
Правило образования
суммы рациональных чисел
определяется
формулой
.
Операция нахождения суммы называется
сложением.
Правило сложения рациональных чисел обладает следующими свойствами:
2. а+b=b+а (коммутативность, или переместительное свойство);
3.(а+b)+c=а+(b+c) (ассоциативность, или сочетательное свойство);
4.(особая
роль нуля);
5.;
число а1
называется противоположным для числа
а.
III. Правило образования произведения.
Существует правило, посредством которого любым двум рациональным числам а и b ставится в соответствие определенное рациональное число с, называемое их произведение и обозначаемое символом с=аb.
Правило образования произведения рациональных чисел
определяется
формулой
.
Операция нахождения произведения называется умножением. Свойства правила умножения рациональных чисел:
6.
(переместительное
свойство);
7.
(сочетательное
свойство);
8.
(особая
роль единицы);
9.
рациональное
число а-
называется
обратным рациональному числу а.
Свойство, связывающие правила сложения и умножения:
10.
(распределительное
свойство умножения относительно суммы).
Свойства, связывающие знак со знаком сложения и умножения
11.
12.
Последнее свойство, называемое аксиомой Архимеда, формулируется следующим образом.
Каково бы ни было рациональное число а, можно число 1 повторить слагаемым столько раз, что полученная сумма превзойдет а.
Из вышеперечисленных основных свойств рациональных чисел могут быть получены как следствие все другие алгебраические свойства этих чисел, относящиеся как к арифметическим действиям, так и к сочетанию равенств и неравенств.