
- •Общие сведения
- •Краткое содержание
- •Практикум
- •Тема 1. Векторная алгебра.
- •1.1. Понятие вектора и линейные операции над векторами.
- •1.1.1. Понятие вектора.
- •1.1.2. Линейные операции над векторами.
- •Свойства сложения векторов:
- •1.1.3. Понятие линейной зависимости векторов.
- •1.1.4. Линейные комбинации двух векторов.
- •Доказательство.
- •1.1.5. Линейные комбинации трех векторов.
- •Доказательство.
- •1.1.6. Линейная зависимость четырех векторов.
- •1.1.7. Понятие базиса. Аффинные координаты.
- •1.1.8. Проекция вектора на ось.
- •1.1.9. Декартова прямоугольная система координат в пространстве. (дпск)
- •1.2. Скалярное произведение двух векторов.
- •1.2.1. Определение скалярного произведения (сп).
- •1.2.2. Геометрические свойства сп.
- •Доказательство.
- •1.2.3. Алгебраические свойства сп.
- •1.2.4. Выражение скалярного произведения (сп) в декартовых прямоугольных координатах (дпк).
- •1.3. Векторное произведение двух векторов.
- •1.3.1. Правые и левые тройки векторов и системы координат.
- •1.3.2. Векторное произведение двух векторов (вп).
- •1.3.3. Геометрические свойства вп.
- •1.3.4. Алгебраические свойства векторного произведения (вп).
- •1.3.5. Понятие матрицы и определителя второго и третьего порядка.
- •1.3.6. Выражение векторного произведения (вп) в декартовых прямоугольных координатах (дпк).
- •1.3.7. Смешанное произведение трех векторов.
- •1.3.8. Выражение смешанного произведения в декартовых координатах.
- •1.4. Уравнение линии на плоскости.
- •1.4.1.Параметрическое представление линии.
- •1.4.2.Уравнение линии в полярных координатах.
- •1.4.3. Пересечение двух линий.
- •1.4.4. Уравнение поверхности и уравнение линии в пространстве.
- •1.5. Различные виды уравнений прямой на плоскости.
- •1.5.1. Общее уравнение прямой.
- •1.5.2. Уравнение прямой с угловым коэффициентом.
- •1.5.3. Уравнение прямой в отрезках.
- •1.5.4. Каноническое уравнение прямой.
- •1.5.5. Параметрические уравнения прямой.
- •1.5.6. Угол между двумя прямыми. Условия параллельности и перпендикулярности двух прямых.
- •1.5.7. Нормированное уравнение прямой. Отклонение точки от прямой.
- •1.5.8. Приведение общего уравнения прямой к нормированному виду.
- •Тема 2. Геометрия на плоскости и в пространстве. Общие сведения
- •Краткое содержание
- •Практикум
- •Тема 2. Кривые второго порядка.
- •2.1. Эллипс.
- •2.1.1. Определение эллипса и вывод его канонического уравнения.
- •2.1.2. Исследование формы эллипса.
- •2.1.3. Эксцентриситет и фокальные радиусы эллипса.
- •2.2. Гипербола.
- •2.2.1. Определение гиперболы и вывод ее канонического уравнения.
- •2.2.2. Исследование формы гиперболы.
- •Асимптоты гиперболы
- •Равнобочная гипербола
- •Сопряженная гипербола
- •2.2.3. Эксцентриситет и фокальные радиусы гиперболы.
- •Фокальные радиусы
- •2.3. Парабола.
- •2.3.1. Определение параболы и ее уравнение.
- •2.3.2. Исследование формы параболы.
- •2.4. Общее свойство кривых второго порядка - эллипса, гиперболы и параболы.
- •2.4.1. Директриса эллипса гиперболы и параболы.
- •2.4.2. Полярное уравнение кривой второго порядка.
- •Тема 3. Вещественные и комплексные числа. Общие сведения
- •Краткое содержание
- •Практикум
- •3.1. Плоскость как поверхность первого порядка.
- •3.2. Неполные уравнения плоскости.
- •3.3. Уравнение плоскости в отрезках.
- •3.4. Нормальное уравнение плоскости. Расстояние от точки до плоскости.
- •3.5. Уравнение прямой в пространстве.
- •3.6. Направляющий вектор прямой. Канонические уравнения прямой. Параметрические уравнения прямой.
- •3.7. Некоторые дополнительные предложения и примеры.
- •Тема 4. Числовые последовательности. Общие сведения
- •Прямое произведение двух множеств.
- •4.1.2.Вещественные числа и их изображение на числовой оси. Основные свойства рациональных чисел.
- •Измерение отрезков числовой оси.
- •4.1.3. Ограниченные множества вещественных чисел.
- •Теорема 1.
- •4.1.4. Некоторые конкретные множества вещественных чисел.
- •4.2. Теория последовательностей.
- •4.2.1. Понятие числовой последовательности.
- •4.2.2. Бесконечно большие и бесконечно малые последовательности.
- •Примеры.
- •4.2.3. Основные теоремы о бесконечно малых последовательностях.
- •4.2.4. Сходящиеся последовательности. Основные определения.
- •Определение 2.
- •4.2.5. Основные свойства сходящихся последовательностей.
- •4.2.6. Арифметические свойства сходящихся последовательностей.
- •4.2.7. Монотонные последовательности.
- •4.2.8. Число е.
- •4.2.9. Предельный переход в неравенствах.
- •Следствие 1.
- •4.2.10. Подпоследовательности числовых последовательностей.
- •4.2.11. Предельные точки последовательности.
- •4.3. Понятие функции. Предел функции. Непрерывность.
- •4.3.1. Определение функции. Определение 1.
- •4.3.2. Способы задания функций.
- •4.3.3. Монотонные функции.
- •4.3.4. Сложная функция.
- •4.3.5. Обратная функция.
- •4.3.8. Односторонние пределы.
- •4.3.9. Пределы на бесконечности.
2.4. Общее свойство кривых второго порядка - эллипса, гиперболы и параболы.
2.4.1. Директриса эллипса гиперболы и параболы.
Построим эллипс,
заданный каноническим уравнением
.
Затем построим две прямые, перпендикулярные
к большой оси эллипса, на расстоянии
(Рис.
10). Эти прямые, уравнения которых будут:
и
,
называются директрисами
эллипса.
Рис. 10
При их построении
следует учесть, что
>a,
так как эксцентриситет эллипса <1.
Правая директриса,
уравнение которой
,
будет проходить правее вершины эллипса
А1,
а левая директриса, уравнение которой
,
- левее вершины эллипса А2
(Рис. 10).
Построим гиперболу, заданную каноническим уравнением
и две прямые,
перпендикулярные действительной оси
гиперболы и симметрично расположенные
относительно центра на расстоянии,
равном
(Рис.
11).
Рис.11
Эти прямые (их уравнения
и
)
называются директрисами
гиперболы
(соответственно, правой и левой).
При их построении
следует учесть, что
<a,
так как эксцентриситет гиперболы >1.
Правая директриса
гиперболы
будет
проходить левее правой вершины гиперболы
А1,
а левая директриса гиперболы
будет
проходить правее левой вершины гиперболы
А2.
С помощью директрис и эксцентриситета можно выявить общее свойство, присущее кривым второго порядка: эллипсу, гиперболе и параболе. Имеет место следующая теорема: отношение расстояний от произвольной точки М(х;у) любой из этих кривых до фокуса и до соответствующей директрисы есть величина постоянная, равная эксцентриситету кривой. Докажем эту теорему последовательно для эллипса, гиперболы и параболы.
Доказательство. Пусть у эллипса F1 - правый фокус, прямая D1L1 - правая директриса. F2 - левый фокус, D2L2 - левая директриса (Рис. 1). Возьмем на эллипсе произвольную точку М(х;у), соединим ее отрезками MF1 и MF2 (MF1=r1, MF2=r2) c фокусами и опустим из нее перпендикуляры МК1 и МК2 на обе директрисы (МК1=d1 и MK2=d2) и на ось ОХ. Требуется доказать, что
.
На основании выведенных ранее формул имеем:
r1 = a - x, r2 = a + x,
(Здесь N - основание перпендикуляра, опущенного из точки М на ось ОХ)
.
Вычисляя отношения
и
,
получим:
Таким образом, данная теорема для эллипса доказана.
Пусть у гиперболы F1 - правый фокус, D1L1 - соответствующая ему правая директриса, F2 - левый фокус, D2L2 - соответствующая ему левая директриса (Рис. 11). Возьмем на гиперболе произвольную точку М(х;у), соединим ее c фокусами F1М=r1, F2М=r2, затем из точки М опустим перпендикуляры на обе директрисы К1М=d1 и K2М=d2. Требуется доказать, что
.
Применяя выведенные ранее формулы, получим:
r1 = -a + x, r2 = a + x,
и, следовательно
Таким образом, данная теорема доказана и для гиперболы.
Что касается параболы,
являющейся геометрическим местом таких
точек, которые равноудалены от фокуса
и директрисы, то для любой точки параболы
будет справедливо равенство
,
где d - расстояние от точки параболы до
директрисы. Иначе, отношение расстояний
от любой точки параболы до фокуса и до
директрисы равно единице. По аналогии
с остальными кривыми второго порядка
это постоянное отношение называют
эксцентриситетом параболы. Следовательно,
эксцентриситет параболы равен единице.
Теорема полностью доказана.
Следствие. Для рассматриваемых кривых второго порядка можно дать следующее общее определение: кривые второго порядка есть геометрические места точек на плоскости, отношение расстояний которых до фокуса и до соответствующей директрисы есть величина постоянная, равная , причем у эллипса <1, у гиперболы >1, у параболы =1.