
- •В.Н. Горбунова
- •Дубна, 2010
- •Введение
- •Содержание и оформление курсового проекта Задание на курсовой проект
- •Варианты заданий
- •Содержание расчетно-пояснительной записки.
- •Теоретические основы выполнения курсового проекта.
- •Диффузионное легирование
- •Законы диффузии
- •Диффузия из постоянного и ограниченного источников.
- •Методы расчетов диффузионных структур
- •Формирование структур методом ионной имплантации
- •Понятие о технологии ионного легирования
- •. Длина пробега ионов
- •Факторы, влияющие на процесс ионного легирования
- •Рабочая камера установки ионной имплантации.
- •Пример выполнения курсового проекта Введение
- •Исходные данные
- •Профиль распределения концентрации примесей в отдельных областях структуры
- •Глубины залегания коллекторного и эмиттерного переходов
- •График зависимости предельной растворимости примесей в кремнии.
- •Максимальная растворимость некоторых примесей в кремнии.
- •Расчет технологических параметров для метода диффузии
- •Часть вторая Метод ионной имплантации
- •Расчет профилей распределения концентрации внедренных примесей в структурах с двойной имплантацией
- •Расчет технологических параметров для метода ионной имплантации
- •Заключение
- •Список используемой литературы
- •Контрольные вопросы и задания
- •Задачи к защите курсового проекта
- •Список литературы
- •В.Н.Горбунова Физико-химические основы технологии рэсрэс
- •117105, Москва, варшавское шоссе, 8
Формирование структур методом ионной имплантации
В начале 60-х годов на стыке физики полупроводников и физики атомных столкновений возникло новое научно-техническое направление — ионное легирование полупроводников, имеющее большое значение для полупроводниковой электроники.
Ионная имплантация-это управляемое введение атомов примеси в поверхностный слой подложки путем бомбардировки ее ионами с энергией от нескольких килоэлектрон-вольт до нескольких мегаэлектрон-вольт .
Интерес к методу ионного легирования (ионно-лучевого легирования) вызван тем, что он обладает рядом существенных преимуществ по сравнению с диффузией..
Основные достоинства метода:
-
сравнительно низкая температура обработки полупроводниковых подложек;
-
точный контроль глубины и профиля распределения примеси; гибкость и универсальность;
-
возможность полной автоматизации.
Наиболее широкое распространение ионная имплантация получила в технологии загонки строго дозированного количества примесных атомов, которое используется в качестве источника при последующей диффузионной разгонке для формирования примесного профиля. Помимо того имплантация используется для создания тонких базовых областей биполярных транзисторов, управления пороговыми напряжениями МДП-транзисторов и других целей. Маски при данном методе легирования могут быть изготовлены из фоторезестов, окислов, нитридов, поликристаллического кремния и др.
Для контроля ионно-имплантированных структур исследуют профили распределения внедренных атомов.
Понятие о технологии ионного легирования
При внедрении в мишень быстрые ионы в результате столкновений с атомными ядрами и электронами теряют свою энергию и останавливаются. Длина пути ионов от поверхности мишени (точка 0) до точки внедрения называется длиной пробега R, а ее проекция на направление первоначального движения – проекцией пробега Rp, которая является экспериментально определяемой величиной.
Распределение пробега ионов в аморфном теле зависит главным образом от их энергии и атомной массы, а также вещества мишени. Для монокристаллических мишеней на распределение пробега влияет ориентация их граней относительно пучка ионов и наличие эффекта каналирования – движение ионов по каналам, образованным атомными плоскостями.
При движении ионов в твердом теле внедряемые в подложку ионы меняют направление своего движения из-за столкновений с атомами мишени, которые могут покидать свои первоначальные положения в узлах кристаллической решетки. В результате вдоль траектории внедренных ионов образуются многочисленные вакансии и междоузельные атомы. Возникают целые области, в которых нарушена кристаллическая решетка, вплоть до перехода монокристалла в аморфное состояние. При этом обычно оценивают два вида потерь энергии ионами – в результате взаимодействия их с электронами (как связанными, так и свободными) и ядрами. Ядерное торможение более существенно при малых энергиях, электронное торможение преобладает при высоких энергиях ионов.
А – область, в которой распределение имеет такой же вид, как и в аморфной мишени.
Б – область деканалирования.
В – распределение атомов, создаваемое каналированием.
При точной ориентации направления падения пучка ионов вдоль одной из кристаллографических осей пластины полупроводника— (11О) или (111) — часть ионов движется вдоль атомных рядов, между которыми имеются достаточно широкие каналы, свободные от атомов. Это явление называют каналированием. Попав в канал, ионы испытывают менее сильное торможение и проникают и несколько раз глубже, чем в случае неориентированного внедрения.
Внедряя ионы III и V групп в монокристалл кремния можно получить p-n-переход в любом месте, на любой площади. Используя ионы высокой энергии в результате их глубокого проникновения в кремний n-типа можно получить скрытую область p-типа и, наоборот в p-кремнии создать скрытую область n-типа.
Низкая энергия Высокая энергия
Переход, образованный в результате ионного легирования.
Основное преимущество метода ионного легирования перед диффузией – это свобода выбора легирующей примеси независимо от вида полупроводникового материала, так как при ионном легировании нет необходимости учитывать степень растворимости примесей и коэффициент диффузии.
Преимущества ионной имплантации по сравнению с термической диффузией примеси сводятся к следующему:
-
Процесс не требует нагрева пластин и, следовательно, не приводит к изменению параметров ранее сформированных слоёв (за счёт диффузионной разгонки).
-
Так как ионный пучок перпендикулярен к пластине, размеры легированной области точно соответствуют размерам окна в оксидной маске.
-
Количество введённой примеси точно дозируется (контролируется в процессе облучения).