Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
НЕФТЬ (Восстановлен).docx
Скачиваний:
8
Добавлен:
15.11.2018
Размер:
270.57 Кб
Скачать

Крекинг Общий вид крекинг завода.

Выход бензина из нефти можно значительно увеличить (до 65-70 %) путем расщепления углеводородов с длинной цепью, содержащихся, например, в мазуте, на углеводороды с меньшей относительной молекулярной массой. Такой процесс называется крекингом (от англ. Crack- расщеплять).

Каталитический крекинг - процесс термокаталитической переработки нефтяных фракций с целью получения компонента высокооктанового бензина и непредельных жирных газов. Сырьем для каталитического крекинга служат атмосферный и легкий вакуумный газойль, задачей процесса является расщепление молекул тяжелых углеводородов, что позволило бы использовать их для выпуска топлива. В процессе крекинга выделяется большое количество жирных (пропан-бутан) газов, которые разделяются на отдельные фракции и по большей части используются в третичных технологических процессах на самом НПЗ. Основными продуктами крекинга являются пентан-гексановая фракция (т. н. газовый бензин) и нафта крекинга, которые используются как компоненты автобензина. Остаток крекинга является компонентом мазута.

Крекингом называется процесс расщепления углеводородов, содержащихся в нефти, в результате которого образуются углеводороды с меньшим числом атомов углерода в молекуле.

Крекинг изобрел русский инженер В.Г. Шухов в 1891 г. В 1913 г изобретение Шухова начали применять в Америке. В настоящее время в США 65% всех бензинов получается на крекинг - заводах.

Историческая справка . Владимир Григорьевич Шухов (1853-1939). Строитель и механик, нефтяник и теплотехник, гидротехник и судостроитель, ученый и изобретатель. По проектам Шухова было построено более 500 стальных мостов. Шухов впервые предложил использовать вместо сложных шарниров простые соединения на заклепках. Чрезвычайно интересны работы Шухова по сооружению металлических сетчатых оболочек. Изобрел крекинг нефти. Нефтепроводы, по которым нефть перекачивается, также сделаны по его формулам. Резервуары для хранения нефти также его заслуга.

Наши нефтяники часто рассказывают о судебной тяжбе двух американских фирм. Около 25 лет назад американская фирма “Кросса” обратилась в суд с жалобой на то, что фирма “Даббса” присвоила себе ее изобретение – крекинг. Фирма “Кросса” требовала с другой большую сумму денег за “незаконное” использование изобретения. Суд встал на сторону “Кросса”. Но на суде адвокат фирмы “Даббса” заявил, что крекинг изобретен не той и не другой фирмой, а русским инженером Шуховым . Шухов тогда был жив. Приехали к нему в Москву американцы и спросили, чем он может доказать, что крекинг изобретен им. Шухов вынул из стола документы, из которых было ясно, что свой крекинг Шухов запатентовал еще 35 лет назад до тяжбы этих двух фирм.

Аппаратура крекинг – заводов в основном та же, что и для перегонки нефти. Это – печи, колонны. Но режим переработки другой. Сырье тоже другое. Процесс расщепления ведется при более высоких температурах (до 600 0 С), часто при повышенном давлении. При таких температурах крупные молекулы углеводородов раздробляются на более мелкие.

Мазут густ и тяжел, его удельный вес близок к единице. Это потому, что он состоит из сложных и крупных молекул углеводородов. Когда мазут подвергается крекингу, часть составляющих его углеводородов распадаются на более мелкие, а из мелких углеводородов как раз и составляются легкие нефтяные продукты – бензин, керосин.

При крекинге нефть подвергается химическим изменениям. Меняется строение углеводородов. В аппаратах крекинг – заводов происходят сложные химические реакции. Эти реакции усиливаются, когда в аппаратуру вводят катализаторы.

Одним из таких катализаторов является специально обработанная глина. Эта глина в мелком раздробленном состоянии – в виде пыли – вводится в аппаратуру завода. Углеводороды, находящиеся в парообразном состоянии, соединяются с пылинками глины и раздробляются на их поверхности. Такой крекинг называется крекингом с пылевидным катализатором. Этот вид крекинга широко распространен.

Катализатор потом отделяется от углеводородов. Углеводороды идут своим путем на ректификацию и в холодильники, а катализатор – в свои резервуары, где его свойства восстанавливаются.

Процесс крекинга происходит с разрывом углеводородных цепей и образованием более простых предельных и непредельных углеводородов, например:

С 16 Н 34 С 8 Н 18 + С 8 Н 16

гексадекан октан октен

образовавшиеся вещества могут разлагаться далее:

С 8 Н 18 С 4 Н 10 + С 4 Н 8

октан бутан бутен

С 4 Н 10 С 2 Н 6 + С 2 Н 4

бутан этан этилен (этен)

Выделившийся в процессе крекинга этилен широко используется для производства полиэтилена и этилового спирта.

Расщепление молекул углеводородов протекает по радикальному механизму. Вначале образуются свободные радикалы:

СН 3 – (СН 2 ) 6 – СН 2 :СН 2 – (СН 2 ) 6 – СН 3 t

t 3 – (СН 2 ) 6 – СН 2 . + . СН 2 – (СН 2 ) 6 – СН 3

Свободные радикалы химически очень активны и могут участвовать в различных реакциях. В процессе крекинга один из радикалов отщепляет атом водорода (а), а другой – присоединяет (б):

а) CН 3 – (СН 2 ) 6 – СН 2 . СН 3 – (СН 2 ) 5 – СН=СН 2 + Н О

1-октен

б) CН 3 – (СН 2 ) 6 – СН 2 . + СН 3 – (СН 2 ) 6 – СН 3

октан

Различают 2 вида крекинга: термический и каталитический.

Термический крекинг

Расщепление молекул углеводородов протекает при более высокой температуре (470-550 0 С). Процесс протекает медленно, образуются углеводороды с неразветвленной цепью атомов углерода.

В бензине, полученном в результате термического крекинга, наряду с предельными углеводородами, содержится много непредельных углеводородов. Поэтому этот бензин обладает большей детонационной стойкостью, чем бензин прямой перегонки.

В бензине термического крекинга содержится много непредельных углеводородов, которые легко окисляются и полимеризуются. Поэтому этот бензин менее устойчив при хранении. При его сгорании могут засориться различные части двигателя. Для устранения этого вредного действия к такому бензину добавляют окислители.

Каталитический крекинг

Расщепление молекул углеводородов протекает в присутствии катализаторов и при более низкой температуре (450-500 0 С).

Главное внимание уделяют бензину. Его стараются получить больше и обязательно лучшего качества. Каталитический крекинг появился именно в результате долголетней, упорной борьбы нефтяников за повышение качества бензина. По сравнению с термическим крекингом процесс протекает значительно быстрее, при этом происходит не только расщепление молекул углеводородов, но и их изомеризация, т.е. образуются углеводороды с разветвленной цепью атомов углеродов.

Бензин каталитического крекинга по сравнению с бензином термического крекинга обладает еще большей детонационной стойкостью , ибо в нем содержатся углеводороды с разветвленной цепью углеродных атомов.

В бензине каталитического крекинга непредельных углеводородов содержится меньше, и поэтому процессы окисления и полимеризации в нем не протекают. Такой бензин более устойчив при хранении.

Гидрокрекинг

Гидрокрекинг — процесс расщепления молекул углеводородов в избытке водорода. Сырьем гидрокрекинга является тяжелый вакуумный газойль (средняя фракция вакуумной дистилляции). Главным источником водорода служит газ риформинга. Основными продуктами гидрокрекинга являются дизельное топливо и т. н. бензин гидрокрекинга (компонент автобензина).

В процессе гидрокрекинга происходят следующие превращения:

1. Гидроочистка — из сырья удаляются сера-азотсодержащие соединения;

2. Расщепление тяжелых молекул углеводорода на более мелкие;

3. Насыщение водородом непредельных углеводородов.

В зависимости от степени превращения сырья различают легкий (мягкий) и жесткий гидрокрекинг.

Гидрокрекинг — гидрокаталитическая переработка сырья для получения базовых масел с высоким индексом вязкости (100 и выше), низким содержанием сернистых и ароматических углеводородов. Масла нужного качества получаются не удалением нежелательных компонентов из сырья (как в случае с очисткой селективными растворителями, адсорбционной очисткой и гидроочисткой), а преобразованием их в углеводороды необходимой структуры за счёт реакций гидрирования, крекинга, изомеризации и гидрогенолиза (происходит удаление серы, азота, кислорода), что сказывается на стабильности получаемых масел. При гидрокрекинге получают высококачественные основы широкого ассортимента товарных смазочных масел: гидравлических, трансформаторных, моторных, энергетических, индустриальных и.т.д. По своим физико-химическим свойствам масла ГК приближаются по свойствам к синтетическим маслам (ПАО), при более низкой стоимости производства. По сравнению с базовыми маслами получаемыми традиционными способами очистки имеют безоговорочные преимущества, особенно при производстве автомобильных масел.

Коксование

Процесс получения нефтяного кокса из тяжелых фракций и остатков вторичных процессов.

Коксование является разновидностью глубокого термического крекинга углеводородов с целью получения нефтяного кокса и газойлевых фракций. Осуществляется при 420—560 °C и давлениях до 0,65 МПа. Продолжительность процесса варьирует от десятков минут до десятков часов.

Описание и схема процесса

Процесс замедленного коксования в необогреваемых камерах предназначен для получения крупно-кускового нефтяного кокса как основного целевого продукта, а также легкого и тяжелого газойлей, бензина и газа.

Сырьем для коксования служат малосернистые атмосферные и вакуумные нефтяные остатки, сланцевая смола, тяжелые нефти из битуминозных песков. Эти виды сырья дают губчатый кокс. Для получения высококачественного игольчатого кокса используют более термически стойкое ароматизированное сырье, например смолу пиролиза, крекинг - остатки и каталитические газойли.

Основными показателями качества сырья являются плотность, коксуемость по Конрадсону и содержание серы. Выход кокса определяется коксуемостью сырья и практически линейно изменяется в зависимости от этого показателя. При коксовании в необогреваемых камерах остаточного сырья выход кокса составляет 1,5—1,6 от коксуемости сырья. При коксовании дистиллятного сырья выход кокса не соответствует коксуемости сырья, поэтому составлять материальный баланс расчетным методом для такого сырья нельзя.

Главным потребителем кокса является алюминиевая промышленность, где кокс служит восстановителем (анодная масса) при выплавке алюминия из алюминиевых руд. Кроме того, кокс используют в качестве сырья при изготовлении графитированных электродов для сталеплавильных печей, для получения карбидов (кальция, кремния) и сероуглерода.

Основными показателями качества кокса являются истинная плотность, содержание серы, зольность и микроструктура. Для игольчатого кокса истинная плотность должна быть не ниже 2,09 г/см3, для кокса марки КНПС (пиролизного специального), используемого в качестве конструкционного материала, она находится в пределах 2,04—2,08 г/см3

Содержание серы в коксе почти всегда больше, чем в остаточном сырье коксования. Из остатков малосернистых нефтей получают малосернистый кокс, содержащий, как правило, до 1,5% (масс.) серы; кокс из сернистых остатков содержит обычно 2,0 - 4,5 % (масс.) серы, а из высокосернистых — более 4,0 % (масс.).

Содержание золы в коксе в значительной мере зависит от глубины обессоливания нефти перед ее перегонкой.

В эксплуатации находятся установки замедленного коксования мощностью 300, 600 и 1500 тыс. т сырья в год. На рисунке приведена установка мощностью 600 тыс. т в год, которая включает реакторный блок, состоящий из четырех коксовых камер, две трубчатые нагревательные печи, блок фракционирования и систему регенерации тепла и охлаждения продуктов.

Сырье — гудрон или крекинг-остаток (или их смесь) — подается насосом 9 двумя параллельными потоками в трубы подовых и потолочных экранов печей 1 и 2, где оно нагревается до 350—380 °С. Затем сырье поступает в нижнюю часть колонны 3 на верхнюю каскадную тарелку. Сюда же под нижнюю тарелку поступают горячие газы и пары продуктов коксования, образующиеся в двух параллельно работающих камерах 4 (или 4'). В колонне сырье встречается с восходящим потоком газов и паров и в результате контакта тяжёлые фракции паров конденсируются и смешиваются с сырьем. Таким образом, в нижней части колонны образуется смесь сырья с рециркулятом, обычно называемая вторичным сырьем. Если в сырье содержались легкие фракции, то они в результате контакта с высокотемпературными парами, испаряются и уходят в верхнюю часть колонны 3.

Вторичное сырье с низа колонны забирается насосом 3 и возвращается в змеевики печи 1 и 2, в верхние трубы конвекционной секции, и правые подовые и потолочные экраны. Эта часть труб отно¬сится к «реакционному» змеевику, здесь вторичное сырье нагревается до 490—510 °С. Во избежание закоксовывания труб этой секции в трубы потолочного экрана подают перегретый водяной пар, так называемый турбулизатор, в количестве примерно 3% (масс.) на вторичное сырье. За счет подачи турбулизатора увеличивается скорость прохождения потока через реакционный змеевик. Избыток перегретого, водяного пара может подаваться в отпарные колонны 5 и 5'.

Парожидкостная смесь из печей 1 и 2 вводится параллельными потоками через четырех ходовые краны 16 две работающие камеры 4, две другие камеры 4') в это время подготавливают к рабочему периоду цикла. Горячее сырье подаётся в камеры вниз и постепенно заполняет их. Объем камер достаточно большой (внутренний диаметр 4,6—5,5 м, высота 27—28 м), и время пребывания сырья в них значительно. Здесь в камерах сырье подвергается крекингу. Пары продуктов разложения непрерывно выводятся из камер сверху и поступают в колонну, а тяжелый остаток остается. Жидкий остаток постепенно превращается в кокс.

В колонне 3 продукты коксования разделяются. С верха колонны уходят пары бензина и воды, а также газ коксования. Эти продукты проходят аппарат воздушного охлаждения 6, затем водяной холодильник 7 для дополнительного охлаждения и поступают в водогазоотделитель 15, где разделяются на водный конденсат, нестабильный бензин и жирный газ.

Часть нестабильного бензина нагнетается насосом 14 в качестве орошения на верхнюю тарелку колонны 3. Балансовое количество бензина проходит теплообменник 8, где нагревается за счет тепла легкого газойля, и передается в секцию стабилизации. Водный конденсат, отводимый из водогазоотделителя 15, подается насосом 13 через теплообменник 8’ в пароперегреватели, расположенные в конвекционных секциях печей 1 и 2.

Легкий и тяжелый газойли, отводимые из отпарных колонн 5 и 5’ направляются соответственно насосами 11 и 12 через теплообменники нагрева нестабильного бензина 8, водного конденсата 8’ и аппараты воздушного охлаждения 6’и 6” в резервуары.

После заполнения камер коксом, образующимся в процессе, камеры отключают и продувают водяным паром для удаления оставшихся жидких продуктов и нефтяных паров. Удаляемые продукты поступают вначале в колонну 3, а затем, когда температура кокса понизится до 400—405 °С, поток паров отдувают в приемник 17. Подачу водяного пара продолжают до снижения температуры кокса до 200 °С, далее в камеру подают воду до тех пор, пока вновь подаваемые порции воды, пары которой выходят в атмосферу, не перестанут испаряться, т.е. пока в сливной трубе приемника 17 не появится вода.

Изомеризация

Процесс получения изоуглевородов (изопентан, изогексан) из углеводородов нормального строения. Целью процесса является получение сырья для нефтехимического производства (изопрен из изопентана) и высокооктановых компонентов автомобильных бензинов.

Процесс изомеризация направлен на получение высокооктановых компонентов товарного бензина из низкооктановых фракций нефти путем структурного изменения углеродногоскелета. Источником детонации в ДВС является образование свободных радикалов по цепному механизму. Нормальные неразветвленные алканы при горении образуют наиболее активные первичные радикалы, чем вторичные или третичные радикалы при горении разветвленных алканов с изостроением. Поэтому чем разветвление молекула, тем выше её детонационная стойкость, октановое число.

На сегодняшний день изомеризация возможна только легких алканов бутана, пентана и гексана. Это фракция нефти с пределами выкипания 28-70°С называется легкая нафта,петролейный эфир, газовый бензин. Проводятся серьёзные исследования возможности изомеризации более тяжелых алканов. В нефтеперерабатывающей промышленности реализовано два типа изомеризации: 1. Однопроходная 2. С рециклом.

Однопроходная изомеризация позволяет повысить октановое число И.М. фракции с 70 до 83 пунктов. Смесь улеводородов до и после однопроходной изомеризации.

Изомеризация с рециклом позволяет повысит октановое число фракции с 70 до 92 пунктов, за счет выделения из смеси низкооктановых компонентов и возвращение их на рециркуляцию.

Условия процесса: Давление - 2-3 МПа; Температура в реакторе - 380-410°С; Кратность циркуляции ВСГ - >500 нм³/м³; Катализатор платиносодержащий на ал

Алкилирование

Алкилирование — введение алкила в молекулу органического соединения. Алкилирующими агентами обычно являются алкилгалогениды, алкены, эпоксисоединения,спирты, реже альдегиды, кетоны, эфиры, сульфиды, диазоалканы.

Процесс алкилирования направлен на получения высокооктановых компонентов автомобильного бензина из непредельных углеводородных газов. В основе процесса лежит реакция соединения алкена и алкана с получением алкана с числом атомов углерода равным сумме атомов углерода в сходном алкене и алкане. Поскольку наибольшимоктановым числом обладают молекулы алканов с изо-строением, то молекулы исходного сырья тоже должны иметь изо-строение. В нефтепереработке наибольшее распространение получило сырье алкилирования бутан-бутиленовая фракция (ББФ), которая получается в процессе каталитического крекинга. Основной компонент ББФ изо-бутан и бутилен.

Основные реакции:

  1. изо-бутан + изо-бутилен = изо-октан (2,2,4-триметилпентан) (Октановое число — 100 ед.)

  2. изо-бутан + бутилен-2 = изо-октан (2,2,3-триметилпентан) (ОЧМ < 100)

  3. изо-бутан + изо-бутилен = изо-октан (2,2,3,3-тетраметилбутан) (ОЧМ>100)

Побочные реакции из-за примесей пропилена и нормального бутилена

  1. изо-бутан + пропилен = изо-гептан (2,2-диметилпентан) (ОЧМ<<100)

Перспективы на будущее

В настоящее время нефтехимия дает почти четверть всей химической продукции. Нефть – ценнейшее природное ископаемое, открывшее перед человеком удивительные возможности “химического перевоплощения”. Всего производных нефти насчитывается уже около 3 тысяч.

Нефть занимает ведущее место в мировом топливно-энергетическом хозяйстве. Ее доля в общем потреблении энергоресурсов непрерывно растет. Нефть составляет основу топливно-энергетических балансов всех экономически развитых стран.

Продукты, получаемые из нефти, их применение

Из нефти выделяют разнообразные продукты, имеющие большое практическое значение. Вначале от нее отделяют растворенные углеводороды (преимущественно метан). После отгонки летучих углеводородов нефть нагревают. Первыми переходят в газообразное состояние и отгоняются углеводороды с небольшим числом атомов углерода в молекуле, имеющие относительно низкую температуру кипения. С повышением температуры смеси перегоняются углеводороды с более высокой температурой кипения. Таким образом можно собрать отдельные смеси (фракции) нефти. Чаще всего при такой перегонке получают три основные фракции, которые затем подвергаются дальнейшему разделению. Основные фракции нефти следующие:

  1. Фракция, собираемая от 40 0 до 200 0 С, - газолиновая фракция бензинов – содержит углеводороды от С 5 Н 12 до С 11 Н 24 . При дальнейшей перегонке выделенной фракции получают: газолин (от 40 0 до 70 0 С), бензин (от 70 0 до 120 0 С) – авиационный, автомобильный и т.д.

  2. Лигроиновая фракция , собираемая в пределах от 150 0 до 250 0 С, содержит углеводороды от С 8 Н 18 до С 14 Н 30 . Лигроин применяется как горючее для тракторов.

  3. Керосиновая фракция включает углеводороды от С 12 Н 26 до С 18 Н 38 с температурой кипения от 180 0 до 300 0 С. керосин после очистки используется в качестве горючего для тракторов, реактивных самолетов и ракет.

  4. Газойль (выше 275 0 С) – дизельное топливо.

  5. Мазут – остаток от перегонки. Содержит углеводороды с большим числом атомов углерода (до многих десятков) в молекуле. Мазут также разделяют на фракции:

      1. Соляровые масла – дизельное топливо,

      2. Смазочные масла (авиатракторные, авиационные, индустриальные и др.),

      3. Вазелин (основа для косметических средств и лекарств).

И др.

Из некоторых сортов нефти получают парафин (для производства спичек, свечей и др.). После отгонки остается гудрон . Его широко применяют в дорожном строительстве.