Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фейнман - 3. Излучение. Волны. Кванты.docx
Скачиваний:
14
Добавлен:
12.11.2018
Размер:
1.84 Mб
Скачать

§ 7. Четырехвектор (, k)

Соотношения (34.17) и (34.18) обладают весьма интересным свойством: новая частота ' линейно связана со старой частотой  и старым волновым числом k, а новое волновое число представ­ляется в виде комбинации старого волнового числа и частоты. Далее, волновое число есть скорость изменения фазы с расстоя­нием, а частота — скорость изменения фазы со временем, и сами соотношения обнаруживают глубокую аналогию с пре­образованиями Лоренца для координаты и времени: если со сопоставить с t, a k с х/с2, то новое ' сопоставляется с t', a k' — с координатой х'/с2. Иначе говоря, при преобразовании Лоренца  и k изменяются так же, как t и х. Эти величины  и k составляют так называемый четырехвектор. Четырехкомпонентная величина, преобразующаяся как время и координа­ты, и есть четырехвектор. Здесь все правильно, за исключением одного — четырехвектор имеет четыре компоненты, а у нас фигурируют только две! Как уже говорилось, со и k подобны времени и одной координате пространства; для введения двух остальных координат надо изучить распространение света в трехмерном пространстве.

Пусть задана система координат х, у, z и волна движется в пространстве с волновым фронтом (фиг. 34.11). Длина волны есть К, а направление распространения волны не совпадает ни с одной осью координат.

Фиг. 34.11. Плоская волна, движущаяся под углом.

Какой вид имеет формула движения для такой волны? Ответ очевиден: это cos (a>t-ks), где k = 2п/X a s (расстояние вдоль направления движения вол­ны) — проекция вектора положения на направление движе­ния. Запишем это следующим образом: пусть r есть вектор точки в пространстве, тогда s есть г-еk, где ek — единичный вектор в направлении движения волны. Иначе говоря, s равно rcos(r-ek), проекции расстояния на направление движе­ния. Следовательно, наша волна описывается формулой cos(t-kek•r).

Оказывается очень удобным ввести вектор k, называемый волновым вектором', величина его равна волновому числу 2/, а направление совпадает с направлением распространения волны

(34.19)

Благодаря введению этого вектора волна приобретает вид cos(t-k•r), или cos(t-kxx-kyy-kzz). Выясним смысл про­екций k, например kx. Очевидно, kx есть скорость изменения фазы в зависимости от координаты х. Фиг 34.11 подсказывает нам, что фаза меняется с ростом х так, как если бы вдоль х бежала волна, но соответствующая ей длина волны оказывается больше по величине. «Длина волны в направлении х» больше истинной на множитель, равный секансу угла  между осью х и направле­нием движения истинной волны:

(34.20)

Следовательно, скорость изменения фазы, обратно пропорцио­нальная Xх, в направлении х оказывается меньше на множитель cos а; но этот же множитель содержит и kx, равный модулю k, умноженному на косинус угла между k и осью х!

Итак, мы выяснили смысл волнового вектора, описывающего распространение волны в трехмерном пространстве. Четыре величины со, kx, ky, kz преобразуются в теории относительности как четырехвектор, причем со соответствует времени, a kx, ky, kz соответствуют х, у и z и компонентам четырехвектора.

Еще раньше, когда мы занимались теорией относительности (гл. 17), мы выяснили, что из четырехвекторов можно соста­вить релятивистское штрихованное произведение. Взяв вектор положения x (где , нумерует четыре компоненты — время и три пространственные) и волновой вектор k (где и. снова про­бегает четыре значения), образуем штрихованное произведе­ние х и k , записываемое в виде 'k х. Это произведение есть инвариант, не зависящий от выбора системы коор­динат. Согласно определению штрихованного произведения,

можно записать 'k х. следующем виде:

(34.21)

Поскольку k есть четырехвектор, то, как мы уже знаем, kx есть инвариант по отношению к преобразованиям Лорен­ца. Под знак косинуса в нашей формуле для плоской волны вхо­дит именно это произведение, и оно обязано быть инвариантом от­носительно преобразований Лоренца. У нас не может появиться формула, у которой под знаком косинуса стоит неинвариантная величина, потому что мы знаем, что значение фазы не зависит от выбора системы координат.