Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ.doc
Скачиваний:
24
Добавлен:
12.11.2018
Размер:
276.48 Кб
Скачать

44.4. Применение полного дифференциала к приближенным вычислениям

Из определения дифференциала функции z=ƒ (х; у) следует, что при достаточно малых |Δх| и |Δу| имеет место приближенное равенство

Так как полное приращение Δz=ƒ(х+Δх;у+Δу)-ƒ(х;у), равенство (44.6) можно переписать в следующем виде:

Формулой (44.7) пользуются в приближенных расчетах.

Пример 44.3. Вычислить приближенно 1,02^3,01.

Решение: Рассмотрим функцию z = х^у. Тогда 1,02^3,01 = (х + Δх)у+∆у, где х = 1, Δх = 0,02, у = 3, Δу = 0,01. Воспользуемся формулой (44.7), предварительно найдя Следовательно,

Для сравнения: используя микрокалькулятор, находим: 1,02^3,01 ≈ 1,061418168.

Отметим, что с помощью полного дифференциала можно найти: границы абсолютной и относительной погрешностей в приближенных вычислениях; приближенное значение полного приращения функции и т. д.

44.5. Дифференциалы высших порядков

Введем понятие дифференциала высшего порядка. Полный дифференциал функции (формула (44.5)) называют также дифференциалом первого порядка.

Пусть функция z=ƒ(х;у) имеет непрерывные частные производные второго порядка. Дифференциал второго порядка определяется по формуле (d2z = d(dz). Найдем его:

Отсюда: Символически это записывается так:

Аналогично можно получить формулу для дифференциала третьего порядка:

где

Методом математической индукции можно показать, что

Отметим, что полученные формулы справедливы лишь в случае, когда переменные х и у функции z = ƒ(х;у) являются независимыми.

44.6. Производная сложной функции. Полная производная

Пусть z=ƒ(х;у) — функция двух переменных х и у, каждая из которых является функцией независимой переменной t: х = x(t), у = y(t). В этом случае функция z = f(x(t);y(t)) является сложной функцией одной независимой переменной t; переменные х и у — промежуточные переменные.

Теорема 44.4. Если z = ƒ(х;у) — дифференцируемая в точке М(х;у) є D функция и х = x(t) и у = y(t) — дифференцируемые функции независимой переменной t, то производная сложной функции z(t) = f(x(t);y(t)) вычисляется по формуле

Дадим независимой переменной t приращение Δt. Тогда функции х = = x(t) и у = y{t) получат приращения Δх и Δу соответственно. Они, в свою очередь, вызовут приращение Az функции z.

Так как по условию функция z — ƒ(х;у) дифференцируема в точке М(х; у), то ее полное приращение можно представить в виде

где а→0, β→0 при Δх→0, Δу→0 (см. п. 44.3). Разделим выражение Δz на Δt и перейдем к пределу при Δt→0. Тогда Δх→0 и Δу→0 в силу непрерывности функций х = x(t) и у = y(t) (по условию теоремы — они дифференцируемые). Получаем:

т. е.

или

Частный случай: z=ƒ(х;у), где у=у(х), т. е. z=ƒ(х;у(х)) — сложная функция одной независимой переменной х. Этот случай сводится к предыдущему, причем роль переменной t играет х. Согласно формуле (44.8) имеем:

Формула (44.9) носит название формулы полной производной.

Общий случай: z=ƒ(х;у), где x=x(u;v), у=у(u;v). Тогда z= f(x(u;v);y(u;v)) — сложная функция независимых переменных u и v. Ее частные производныеможно найти, используя формулу (44.8) следующим образом. Зафиксировав v, заменяем в нейсоответствующими частными производными

Аналогично получаем:

Таким образом, производная сложной функции (z) по каждой независимой переменной (u и v) равна сумме произведений частных производных этой функции (z) по ее промежуточным переменным (х и у) на их производные по соответствующей независимой переменной (u и v).

Пример 44.5. Найтиесли z=ln(x^2+у^2), х=u•v, у=u/v.

Решение: Найдем dz/du (dz/dv — самостоятельно), используя формулу (44.10):

Упростим правую часть полученного равенства:

т. е.