Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ.doc
Скачиваний:
24
Добавлен:
12.11.2018
Размер:
276.48 Кб
Скачать

43.3. Непрерывность функции двух переменных

Функция z = ƒ(х;у) (или ƒ(М)) называется непрерывной в точке М0(х0;у0), если она:

а) определена в этой точке и некоторой ее окрестности,

б) имеет предел

в) этот предел равензначению функции z в точке Мо, т. е.

Функция, непрерывная в каждой точке некоторой области, называется непрерывной в этой области. Точки, в которых непрерывность нарушается (не выполняется хотя бы одно из условий непрерывности функции в точке), называются точками разрыва этой функции. Точки разрыва z=ƒ(х;у) могут образовывать целые линии разрыва. Так, функция имеет линию разрыва у=х.

Можно дать другое, равносильное приведенному выше, определение непрерывности функции z=ƒ(х;у) в точке. Обозначим Δх=х—х0, Δу=у—у0, Δz=ƒ(х;у)—ƒ(х0;у0). Величины Δх и Δу называются приращениями аргументов х и у, а Δz — полным приращением функции ƒ(х;у) в точке М0(х0;у0).

Функция z = ƒ(х;у) называется непрерывной в точке М0(х0;у0) є D, если выполняется равенство т. е. полное приращение функции в этой точке стремится к нулю, когда приращения ее аргументов х и у стремятся к нулю.

Пользуясь определением непрерывности и теоремами о пределах, можно доказать, что арифметические операции над непрерывными функциями и построение сложной функции из непрерывных функций приводит к непрерывным функциям — подобные теоремы имели место для функций одной переменной (см. п. 19.4).

43.4. Свойства функций, непрерывных в ограниченной замкнутой области

Приведем свойства функций, непрерывных в ограниченной замкнутой области (они аналогичны свойствам непрерывных на отрезке функций одной переменной — см. п. 19.5). Предварительно уточним понятие области.

Областью называется множество точек плоскости, обладающих свойствами открытости и связности.

Свойство открытости: каждая точка принадлежит ей вместе с некоторой окрестностью этой точки.

Свойство связности: любые две точки области можно соединить непрерывной линией, целиком лежащей в этой области.

Точка No называется граничной точкой области D, если она не принадлежит D, но в любой окрестности ее лежат точки этой области. Совокупность граничных точек области D называется границей D. Область D с присоединенной к ней границей называется замкнутой областью, обозначается D. Область называется ограниченной, если все ее точки принадлежат неко торому кругу радиуса R. В противном случае область называется неограниченной. Примером неограниченной области может служить множество точек первого координатного угла, а примером ограниченной — (d-окрестность точки М0(х0;у0).

Теорема 43.1. Если функция z = f(N) непрерывна в ограниченной замкнутой области, то она в этой области: а) ограничена, т. е. существует такое число R > О, что для всех точек N в этой области выполняется неравенство |f(N)| < R; б) имеет точки, в которых принимает наименьшее т и наибольшее М значения; в) принимает хотя бы в одной точке области любое численное значение, заключенное между m и М.

Теорема дается без доказательства.

§ 44. Производные и дифференциалы функции нескольких переменных

44.1. Частные производные первого порядка и их геометрическое истолкование истолкование

Пусть задана функция z = ƒ (х; у). Так как х и у — независимые переменные, то одна из них может изменяться, а другая сохранять свое значение. Дадим независимой переменной х приращение Δх, сохраняя значение у неизменным. Тогда z получит приращение, которое называется частным приращением z по х и обозначается ∆хz. Итак,

Δхz=ƒ(х+Δх;у)-ƒ(х;у).

Аналогично получаем частное приращение z по у:

Δуz=ƒ(x;у+Δу)-ƒ(х;у).

Полное приращение Δz функции z определяется равенством

Δz = ƒ(х + Δх;у + Δу)- ƒ(х; у).

Если существует предел

то он называется частной производной функции z = ƒ (х; у) в точке М(х;у) по переменной х и обозначается одним из символов:

Частные производные по х в точке М0(х0;у0) обычно обозначают символами

Аналогично определяется и обозначается частная производная от z=ƒ(х;у) по переменной у:

Таким образом, частная производная функции нескольких (двух, трех и больше) переменных определяется как производная функции одной из этих переменных при условии постоянства значений остальных независимых переменных. Поэтому частные производные функции ƒ(х;у) находят по формулам и правилам вычисления производных функции одной переменной (при этом соответственно х или у считается постоянной величиной).

Пример 44.1. Найти частные производные функции z = 2у + е^(х^2-у +1). Решение:

Геометрический смысл частных производных функции двух переменных

Графиком функции z= ƒ (х; у) является некоторая поверхность (см. п. 12.1). График функции z = ƒ (х; у0) есть линия пересечения этой поверхности с плоскостью у = уо. Исходя из геометрического смысла производной для функции одной переменной (см. п. 20.2), заключаем, что ƒ'x(хо;уо) = tg а, где а — угол между осью Ох и касательной, проведенной к кривой z = ƒ (х; у0) в точке Мо(хо;уо; ƒ(хо;уо)) (см. рис. 208).

Аналогично, f'y (х0;у0)=tgβ.