Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мат.анализ.doc
Скачиваний:
18
Добавлен:
12.11.2018
Размер:
3.41 Mб
Скачать

Второй семестр интегралы

1.Неопределённый интеграл и первообразная

Определение 1.1. Пусть функция определена на отрезке .Функция называется первообразной для функции на отрезке , если . Вместо отрезка можно взять любой промежуток .

Пусть - первообразная для на . Тогда и , будет первообразной для на том же отрезке.

Пусть теперь - две любых первообразных для на отрезке .Тогда

.Как следует из теоремы Лагранжа, это означает, что , где - некоторая фиксированная для всего отрезка константа.

Мы только что доказали следующую теорему.

Теорема 1.1 Для того, чтобы две функции были первообразными для одной функции на отрезке , необходимо и достаточно, чтобы они различались на константу.

Определение 1.2. Совокупность всех первообразных функции на отрезке называется неопределённым интегралом функции на отрезке и обозначается .

Если - какая-нибудь первообразная для , то где - произвольная константа.

2.Свойства неопределённых интегралов.

Все свойства неопределённых интегралов вытекают из определения. Для их проверки (или доказательства) достаточно продифференцировать правую и левую части соответствующего равенства; если результаты совпадут, равенство верное.

2.1., если интегралы справа существуют;

2.2. , где - произвольная постоянная; если , то

и

2.3.(Замена переменной) Если , то

2.4. (Правило интегрирования по частям) , если ;

2.5. Стандартная таблица простейших неопределённых интегралов:

1.,если ;

2.

3.

4.

5.

6.

7.

8.

3. Можно заметить, что в стандартную таблицу не попали некоторые интегралы от простейших элементарных функций. Это произошло по двум причинам.

Во-первых, интегралы от логарифма, тангенса, котангенса, арксинуса, арккосинуса, арктангенса и арккотангенса легко вычисляются через приведённые. Во-вторых, в простейших случаях интеграл , где - простейшие элементарные функции

не выражается в конечном виде через простейшие элементарные функции(например,

).

Когда приходится вычислять (говорят: брать) интеграл от функции, которую Вы видите в первый раз, не факт, что Вам удастся подобрать такую конечную комбинацию элементарных функций, производной которой является подинтегральная функция.

Обычно, если сразу не видно, как свести предложенный интеграл к табличному, нужно попытаться упростить его, либо разбив на сумму более простых, либо испробовав какую-либо замену переменных. Часто встречающимися в задачниках заменами являются такие:

и так далее. Нужно помнить, что вместе с следует через новую переменную заменять и .Известно несколько типов интегралов,

которые всегда выражаются в конечном виде через элементарные функции. Некоторые из них приведены ниже.

3.1. Рациональные дроби от одной переменной.

Так называются дроби вида

, где числитель – многочлен степени от , знаменатель – многочлен степени от . Нас будет интересовать случай . Если это неравенство не выполняется, можно разделить числитель на знаменатель с остатком. Для остатка это неравенство будет выполняться.

По одной из основных теорем алгебры, всякий многочлен от одной переменной с действительными коэффициентами может быть однозначно разложен в произведение

, где все коэффициенты - действительные числа, - все действительные корни этого многочлена, каждый со своей кратностью , а все квадратные трёхчлены не имеют действительных корней.

Для доказательства возможности выражения неопределённого интеграла от рациональной дроби в конечном виде через элементарные функции имеют значение следующие три факта. (1)Всякую правильную(с ) рациональную дробь можно разложить на простейшие; (2) Каждой скобке вида при этом разложении соответствует набор дробей

, а каждой скобке вида - набор дробей ; (3)Интеграл от дроби сводится к сумме рациональной дроби с интегралом от .

(Подробности можно посмотреть в «толстом» Фихтенгольце).Таким образом , интеграл от всякой рациональной дроби может быть выражен в виде суммы рациональной функции, логарифмов и арктангенсов в конечном числе.

3.2. Всякая рациональная функция от тригонометрических функций может быть приведена к обычной рациональной заменой ; при замене в интеграле , .

3.3.Рациональную функцию от можно свести к обычной рациональной одной из замен Эйлера.

(1).Если , можно сделать замену ; тогда , и выражается через рационально.

(2). Если , положим .

(3). Если подкоренное выражение имеет различные действительные корни , положим

.

4. Вопросами о том, что делать, если интеграл не выражается в конечном виде через элементарные функции, мы заниматься не будем.

Определённый интеграл

1. Мы будем рассматривать функции, определённые на отрезке . Разбиением отрезка называется выбор точек .(Неравенства могут быть в другую сторону, но все сразу). Мелкостью разбиения называется . Интегральной суммой для данного разбиения называется сумма вида

Определение 2.1. Определённым интегралом называется, если он существует, .Если определённый интеграл существует, функция называется интегрируемой по Риману на отрезке .

Отметим, что в определении не говорится ничего о выборе точек ; их можно выбирать любым способам, лишь бы . То есть, никакие конкретные суммы при взятии предела не рассматриваются, ибо при любом фиксированном таких сумм бесконечно много. Тем не менее, рассмотрение интегральных сумм иногда полезно.

Следствие 1.1. Функция интегрируема, и .

Действительно, для любого разбиения и любого выбора точек интегральная сумма равна .

Теорема 2.1. Если функция интегрируема на отрезке то она на нём ограничена.

Доказательство. Предположим, что не ограничена в точке .При любом , можно выбирать точки так, чтобы: 1)произведение для отрезка , на котором лежит точка , было сколь угодно большим по модулю; 2) чтобы остающаяся часть интегральной суммы была по модулю меньше половины модуля указанного произведения. Если функция интегрируема, у таких интегральных сумм должен быть конечный предел, что противоречит принципу их построения. Теорема доказана.

В дальнейшем мы будем рассматривать только ограниченные на отрезке функции.

Теорема 2.2.Если функция на отрезке интегрируема и не отрицательна, то интеграл от неё не меньше нуля.

Доказательство. Любая интегральная сумма будет неотрицательной, значит и предел этих сумм неотрицателен.

Теорема 2.3.Если на отрезке и обе функции интегрируемы, то

.

Очевидное следствие из предыдущего утверждения.(Применить предыдущую теорему к )

Теорема 2.4. Множество интегрируемых на отрезке функций образует линейное пространство.

Достаточно сравнить интегральные суммы.

Теорема 2.5. .

Очевидно из определения интегральной суммы.

Теорема 2.6.Если , то

Доказательство – из свойств модуля и интегральных сумм

С точки зрения Теорем 2.5,2.6, естественно положить по определению

,

если на некотором отрезке функция интегрируема.

Суммы Дарбу.

Будем для удобства считать, что .

Определение 2.2.Пусть есть некоторое разбиение отрезка . Пусть ; положим

.

Эти суммы называются нижней и верхней суммами Дарбу. В наших предположениях, всегда . Суммы Дарбу зависят только от разбиения отрезка и не зависят от выбора точек .

Теорема 2.7.При добавлении к данному разбиению одной точки нижняя сумма может только увеличиться, верхняя – только уменьшиться.

Доказательство. Пусть - новая точка разбиения, и пусть она лежит на отрезке разбиения . Ни на одном из вновь образовавшихся отрезков нижняя грань функции не может стать меньше, а верхняя – не может стать больше, чем на исходном отрезке. Теорема доказана.

Теорема 2.8. Для любых двух разбиений нижняя сумма первого (второго) не может превосходить верхнюю сумму второго(первого).

Доказательство. Рассмотрим третье разбиение, которое получается, если объединить точки первого и второго разбиений. Нижняя сумма для третьего будет не меньше, чем для первого, верхняя для третьего будет не меньше, чем нижняя для третьего и не больше, чем верхняя для второго, согласно предыдущей теореме. Теорема доказана.

Теорема 2.9.Существуют

.

Доказательство. По предыдущей теореме, множество нижних сумм ограничено сверху, а множество верхних сумм – снизу. Значит, у этих множеств есть, соответственно, верхняя и нижняя грани. Взятие пределов предполагает добавление точек разбиения, при котором нижние суммы не убывают, верхние не возрастают. Значит, предел нижних сумм будет существовать и совпадать с верхней гранью, а для верхних сумм – совпадать с нижней гранью. Неравенство из условия теоремы получится, если перейти к пределу в неравенстве . Теорема доказана.

Теорема 2.10. (Критерий интегрируемости) Для того, чтобы функция была интегрируема на отрезке , необходимо и достаточно, чтобы .

Доказательство. Достаточность. Если условие теоремы выполнено, то .Для любого , и для любого выбора точек имеет место неравенство . Следовательно, предел интегральных сумм существует и равен .

Необходимость. Если интеграл существует, то , такое , что для всех интегральных сумм с мелкостью меньше будет выполняться система неравенств.Перейдём сначала в левом неравенстве к верхней грани, потом в правом – к нижней. Получим ; то есть, разница . Поскольку произвольно, теорема доказана.

Определение 2.3. называется колебанием функции на отрезке .

Критерий интегрируемости функции на отрезке эквивалентен требованию

.