
- •Предисловие
- •Глава 1 задачи логики
- •1. Правильное рассуждение
- •2. Логическая форма
- •3. Дедукция и индукция
- •4. Интуитивная логика
- •5. Некоторые схемы правильных рассуждений
- •6. Традиционная и современная логика
- •7. Современная логика и другие науки
- •Глава 2 слова и вещи
- •1. Язык как знаковая система
- •2. Основные функции языка
- •3. Логическая грамматика
- •Глава 3 имена
- •1. Виды имен
- •2. Отношения между именами
- •Равнозначность
- •Пересечение
- •Подчинение
- •Исключение
- •Противоречащие имена Противоположные имена
- •3. Определение
- •4. Деление
- •1. Деление должно вестись только по одному основанию.
- •2. Деление должно быть соразмерным, или исчерпывающим, т.Е. Сумма объемов членов деления должна равняться объему делимого понятия.
- •3. Члены деления должны взаимно исключать друг друга.
- •4. Деление должно быть непрерывным.
- •Глава 4 высказывания
- •1. Простые и сложные высказывания. Отрицание, конъюнкция, дизъюнкция
- •2. Условное высказывание, импликация, эквивалентность
- •3. Описательные и оценочные высказывания
- •4. Модальные высказывания
- •Глава 5 ловушки языка
- •1. Тайная мудрость языка
- •2. Многозначность
- •3. Эгоцентрические слова
- •4. Неточные и неясные имена
- •5. Гипостазирование
- •6. Роли имен
- •Глава 6 о смысле бессмысленного
- •1. Осмысленное и бессмысленное
- •2. Абсурд
- •3. Синтаксические нарушения
- •4. Семантические нарушения
- •5. Крайние случаи бессмысленного
- •6. Туманное и темное
- •Глава 7 логика высказываний
- •1. Логический закон
- •2. Закон противоречия
- •3. Закон исключенного третьего
- •4. Логические законы тождества, двойного отрицания и другие закон тожества
- •Закон двойного отрицания
- •Законы контрапозиции
- •Модус поненс
- •Модус толленс
- •Модус понендо толленс
- •Модус толлендо поненс
- •Законы де моргана
- •Закон приведения к абсурду
- •Закон косвенного доказательства
- •Закон клавия
- •Закон транзитивности
- •Законы ассоциативности и коммутативности
- •Закон дунса скотта
- •5. Логическое следование
- •6. Язык логики предикатов
- •Глава 8 модальная логика
- •1. Логические модальности
- •2. Физические модальности
- •3. Логическое исследование ценностей
- •Глава 9 логика категорических высказываний
- •1. Категорические высказывания
- •2. Логический квадрат
- •3. Категорический силлогизм
- •Глава 10 доказательство и опровержение
- •1. Понятие доказательства и его структура
- •2. Прямое и косвенное доказательство
- •3. Виды косвенных доказательств
- •4. Опровержение
- •5. Ошибки в доказательстве
- •6. Софизмы
- •Глава 11 индуктивные рассуждения
- •1. Индукция как вероятное рассуждение
- •2. Неполная индукция
- •3. Подтверждение следствий
- •4. Полная индукция и математическая индукция
- •5. Методы установления причинных связей
- •Единственное сходство
- •Единственное различие
- •Сходство и различие
- •Сопутствующие изменения
- •Остающаяся часть причины
- •6. Надежность индукции
- •7. Аналогия
- •Аналогия свойств и аналогия отношений
- •Вероятный характер аналогии
- •Понимание по аналогии
- •Типичные ошибки
- •Глава 12 проблема понимания
- •1. Структура понимания
- •2. Сильное понимание
- •3. Понимание поведения
- •4. Понимание природы
- •5. Понимание языковых выражений
- •6. Объяснение
- •Глава 13 аргументация и логика
- •1. Теория аргументации
- •2. Обоснование
- •3. Эмпирическая аргументация
- •4. Факты как примеры и иллюстрации
- •5. Теоретическая аргументация
- •6. Контекстуальная аргументация
- •7. Обоснование и истина
- •8. Аргументация в поддержку оценок
- •Глава 14 спор и его виды
- •1. Корректные и некорректные споры
- •2. Споры об истине и споры о ценностях
- •3. Четыре разновидности споров
- •4. Общие требования к спору
- •5. Победа в споре
- •Вместо заключения
2. Закон противоречия
Из всех логических законов самым известным является, без сомнения, закон противоречия. И вместе с тем в истории логики не было периода, когда бы этот закон не оспаривался и когда бы дискуссии вокруг него совершенно затихали.
Закон противоречия говорит о противоречащих друг другу высказываниях, т.е. о высказываниях, одно из которых является отрицанием другого. К ним относятся, например, высказывания "Луна – спутник Земли" и "Луна не является спутником Земли", "Трава – зеленая" и "Неверно, что трава зеленая" и т.п. В одном из противоречащих высказываний что-то утверждается, в другом – это же самое отрицается.
Если обозначить буквой А произвольное высказывание, то выражение не-A (неверно, что А) будет отрицанием этого высказывания.
Идея, выражаемая законом противоречия, проста: высказывание и его отрицание не могут быть вместе истинными.
Используя вместо высказываний буквы, эту идею можно передать так: неверно, что А и не-А. Неверно, например, что трава зеленая и не зеленая, что Луна – спутник Земли и не спутник Земли и т.п.
Закон противоречия выражается формулой:
~ (А & ~ А),
неверно, что А и не-А
Закон противоречия говорит о противоречивых высказываниях – отсюда его название. Но он отрицает противоречие, объявляет его ошибкой и тем самым требует непротиворечивости – отсюда другое распространенное имя – закон непротиворечия.
Если применить понятия истины и лжи, закон противоречия можно сформулировать так: никакое высказывание не является вместе истинным и ложным.
В этой версии закон звучит особенно убедительно. Истина и ложь – это две несовместимые характеристики высказывания. Истинное высказывание соответствует действительности, ложное не соответствует ей. Тот, кто отрицает закон противоречия, должен признать, что одно и то же высказывание может соответствовать реальному положению вещей и одновременно не соответствовать ему. Трудно понять, что означают в таком случае сами понятия истины и лжи.
Иногда закон противоречия формулируют следующим образом: из двух противоречащих друг другу высказываний одно является ложным.
Эта версия подчеркивает опасности, связанные с противоречием. Тот, кто допускает противоречие, вводит в свой рассуждения или в свою теорию ложное высказывание. Тем самым он стирает границу между истиной и ложью, что, конечно же, недопустимо.
Закон противоречия был открыт Аристотелем, сформулировавшим его так: "...невозможно, чтобы противоречащие утверждения были вместе истинными...". Аристотель считал данный закон наиболее важным принципом не только мышления, но и самого бытия: "Невозможно, чтобы одно и то же вместе было и не было присуще одному и тому же и в одном и том же смысле". Несколько раньше формулировка закона как принципа самого реального мира встречается у Платона: "Невозможно быть и не быть одним и тем же".
Закон противоречия на протяжении всей истории логики считался одним из наиболее очевидных принципов. Римский философ-стоик Эпиктет так обосновал его необходимость: "Я хотел бы быть рабом человека, не признающего закона противоречия. Он велел бы мне подать себе вина, я дал бы ему уксуса или еще чего похуже. Он возмутился бы, стал бы кричать, что я даю ему не то, что он просил. А я сказал бы ему: ты не признаешь ведь закона противоречия, стало быть, что вино, что уксус, что какая угодно гадость – все одно и то же. И необходимости ты не признаешь, стало быть, никто не в силах принудить тебя воспринимать уксус как что-то плохое, а вино как хорошее. Пей уксус как вино и будь доволен. Или так: хозяин велел побрить себя. Я отхватываю ему бритвой ухо или нос. Опять начинаются крики, но я повторил бы ему свои рассуждения. И все делал бы в таком роде, пока не принудил бы хозяина признать истину, что необходимость непреоборима и закон противоречия всевластен". Смысл этого эмоционального комментария к принудительной силе закона противоречия сводится к идее, известной еще Аристотелю: из противоречия можно вывести все, что угодно. Тот, кто допускает противоречие в своих рассуждениях, должен быть готов к тому, что из распоряжения побрить будет выведена команда отрезать нос и т.п. Поскольку из противоречивого высказывания логически следует любое высказывание, появление в какой-то теории противоречия ведет к ее разрушению. В ней становится доказуемым все, что угодно, истина смешивается с ложью. Ценность такой теории становится близкой нулю.
В средние века активно обсуждался вопрос: подчиняется ли закону противоречия бог, могущество которого беспредельно? Большинство философов и теологов считало, что даже бог не может противоречить самому себе. В сущности, это означало, что бог не всевластен: выше его – законы логики и прежде всего закон, запрещающий противоречие.
К Аристотелю восходит традиция давать закону противоречия, как и ряду других логических законов, три разные интерпретации. В одном случае он истолковывается как принцип логики, говорящий о высказываниях и их истинности: из двух противоречащих высказываний одно должно быть ложным. В другом случае этот же закон понимается как утверждение о структуре самого реального мира: не может быть так, чтобы что-то одновременно существовало и не существовало, имело какой-то признак и не имело его. В третьем случае этот закон звучит уже как истина психологии, касающаяся своеобразия нашего мышления: не удается размышлять о какой-либо вещи, таким образом, чтобы она оказывалась такой и вместе с тем не такой.
Иногда считается, что эти три варианта различаются между собой только словесно. На самом деле это не так. Устройство мира и своеобразие человеческого мышления – темы изучения эмпирических наук. Получаемые ими истины фактические, и значит, случайные. Принципы же логики совершенно иначе связаны с опытом и представляют собой логически необходимые истины. Допускаемое тремя указанными интерпретациями смешение теории бытия, психологии и логики, случайных и необходимых истин освящено долгой традицией, но лишено убедительных оснований.
Большинство неверных толкований закона противоречия и большая часть попыток оспорить его приложимость – если не во всех, то хотя бы в отдельных областях – связаны с неправильным пониманием логического отрицания, а значит, и противоречия.
Высказывание и его отрицание должны говорить об одном и том же предмете, рассматриваемом в одном и том же отношении. Эти два высказывания должны совпадать во всем, кроме единственной черты: то, что утверждается в одном, отрицается в другом. Если это забывается, противоречия нет, поскольку нет утверждения и отрицания.
В романе Ф. Рабле "Гаргантюа и Пантагрюэль" один из героев спрашивает философа Труйогана, стоит жениться или нет. Труйоган отвечает довольно загадочно: и стоит, и не стоит. Казалось бы, явно противоречивый, а потому невыполнимый и бесполезный совет. Но постепенно выясняется, что никакого противоречия здесь нет. Сама по себе женитьба – дело неплохое. Но плохо, когда, женившись, человек теряет интерес ко всему остальному. Видимость противоречия связана здесь с лаконичностью ответа Труйогана. Если же пренебречь соображениями риторики и, лишив ответ загадочности, сформулировать его полностью, станет ясно, что он непротиворечив и, может быть, даже небесполезен.
В "Исторических материалах" Козьмы Пруткова нашел отражение такой эпизод: "Некий, весьма умный, XIV века ученый справедливо тогдашнему германскому императору заметил: "Отыскивая противоречия, нередко на мнимые наткнуться можно и в превеликие от того и схему достойные ошибки войти: не явное ли в том, ваше величество, покажется малоумному противоречие, что люди в теплую погоду обычно в холодное платье облачаются, а в холодную, насупротив того, завсегда теплое одевают?"... Сии, с достоинством произнесенные, ученого слова произвели на присутствующих должное действие, и ученому тому, до самой смерти его, всегда особливое внимание оказывали".
Этот поучительный случай описывается под заголовком: "Наклонность противоречия нередко в ошибки ввести может". Применительно к обсуждаемой теме можно вывести такую "мораль": наклонность видеть логические противоречия там, где их нет, обязательно ведет к неверному истолкованию закона противоречия и попыткам ограничить его действие.
Нет противоречия, например, в утверждении "Осень настала и еще не настала", подразумевающем, что хотя по календарю уже осень, а тепло как летом. Его нет и в том, что, как говорит статистика, замужних женщин заметно больше, чем женатых мужчин: при переписи анкета заполняется со слов самого опрашиваемого.
Появление противоречия в какой-то теории – явный симптом ее неблагополучия. Тем не менее ученые обычно не спешат расставаться с противоречивой теорией. Более того, они не всегда стремятся исключить противоречие сразу же, как только оно обнаружено. Чаще всего противоречие отграничивается от других положений, входящие в него утверждения проверяются и перепроверяются до тех пор, пока не будет выяснено, какое из них является ложным. В конце концов ложное утверждение отбрасывается, и теория становится непротиворечивой. Только после этого можно быть уверенным в ее будущем.
Никто, пожалуй, не утверждает прямолинейно, что дождь идет и не идет, что трава зеленая и одновременно не зеленая. А если и утверждает, то только в каком-то переносном смысле. Противоречие вкрадывается в рассуждения, как правило, в неявном виде.
Чаще всего противоречие довольно легко вскрыть.
В одном из рассказов М. Твена о возбужденных людях говорится, что каждый из них размахивал руками энергичнее, чем его сосед. Понятно, что это невозможно, поскольку внутренне противоречиво.
Противоречиво и сообщение, будто в глухом австралийском селении живут два близнеца, один из которых на 12 лет старше другого, как и сообщение, что родился один близнец нормального роста и веса.
В начале века, когда автомобилей стало довольно много, в одном из английских графств было издано распоряжение, согласно которому если два автомобиля подъезжают одновременно к пересечению дорог под прямым углом, то каждый из них должен ждать, пока не проедет другой. Это распоряжение внутренне противоречиво, и потому невыполнимо.
Какой-то любитель был взят в труппу на эпизодическую роль слуги. Желая хоть чуть-чуть увеличить свой текст, он произнес:
– Сеньор, немой явился... и хочет с вами поговорить.
Желая дать партнеру возможность поправить ошибку, актер ответил:
– А вы уверены, что он немой?
– Во всяком случае, он сам так говорит...
Этот "говорящий немой" так же противоречив, как и "знаменитый разбойник, четвертованный на три неравные половины" или как "окружность со многими тупыми углами".
Но даже такие простенькие противоречия иногда не различаются.
Один тулузский врач, желая позабавиться, поместил в местной газете объявление: "В связи с выездом за границу продаю редкую историческую реликвию: череп Вольтера-ребенка". В течение недели он получил едва ли не сто запросов о цене.
М.Твен рассказывает о беседе с репортером, явившимся взять у него интервью:
– Есть ли у вас брат?
– Да, мы звали его Билль. Бедный Билль!
– Так он умер?
– Мы никогда не могли узнать этого. Глубокая тайна парит над этим делом. Мы были – усопший и я – двумя близнецами и, имея две недели от роду, купались в одной лохани. Один из нас утонул в ней, но никогда не могли узнать, который. Одни думают, что Билль, другие – что я.
– Странно, что вы-то, что вы об этом думаете?
– Слушайте, я открою вам тайну, которой не поверял еще ни одной живой душе. Один из нас двоих имел особенный знак на левой руке, и это был я. Так вот, тот ребенок, что утонул...
Понятно, что если бы утонул сам рассказчик, он не выяснял бы, кто же все-таки утонул: он сам или его брат. Противоречие прикрывается тем, что говорящий выражается так, как если бы он был неким третьим лицом, а не одним из близнецов.
Открытое противоречие является стержнем и маленького рассказа Э.Липиньского: "Жан Марк Натюр, известный французский художник-портретист, долгое время не мог схватить сходство с португальским послом, которого как раз рисовал.
Расстроенный неудачей, он уже собирался бросить работу, но перспектива высокого гонорара склонила его к дальнейшим попыткам добиться сходства.
Когда портрет близился к завершению и сходство было уже почти достигнуто, португальский посол покинул Францию, и портрет остался с несхваченным сходством.
Натюр продал его очень выгодно, но с этого времени решил сначала схватывать сходство и только потом приступать к написанию портрета".
Уловить сходство несуществующего еще портрета с оригиналом так же невозможно, как написать портрет, не написав его.
В комедии Козьмы Пруткова "Фантазия", вызвавшей когда-то недовольство царского двора, некто Беспардонный намеревается продать "портрет одного знаменитого незнакомца: очень похож..." Здесь ситуация обратная: если оригинал неизвестен, о портрете нельзя сказать, что он похож. Кроме того, о совершенно неизвестном человеке нелепо утверждать, что он знаменит.
Противоречие недопустимо в строгом рассуждении, когда оно смешивает истину с ложью. Но, как очевидно уже из приведенных примеров, у противоречия в обычном языке много разных задач.
Оно может выступать в качестве основы сюжета какого-то рассказа, быть средством достижения особой художественной выразительности и т.д.
Если противоречие может сделаться "каналом духовной связи", оно не только допустимо, но даже необходимо.
Реальное мышление – и тем более художественное мышление – не сводится к одной логичности. В нем важно все: и ясность, и неясность, и доказательность и зыбкость, и точное определение и чувственный образ. В нем может оказаться нужным и противоречие, если оно стоит на своем месте.
Нелогично утверждать и отрицать одновременно одно и то же. Но каждому хорошо понятно двустишие римского поэта I в. до н.э. Катулла:
Да! Ненавижу и вместе люблю. – Как возможно, ты спросишь? Не объясню я. Но так чувствую, смертно томясь.
"...Все мы полны противоречий. Каждый из нас – просто случайная мешанина несовместимых качеств. Учебник логики скажет вам, что абсурдно утверждать, будто желтый цвет имеет цилиндрическую форму, а благодарность тяжелее воздуха; но в той смеси абсурдов, которая составляет человеческое "я", желтый цвет вполне может оказаться лошадью с тележкой, а благодарность – серединой будущей недели". Этот отрывок из романа С. Моэма "Луна и грош" выразительно подчеркивает сложность, а нередко и прямую противоречивость душевной жизни человека. "...Человек знает, что хорошо, но делает то, что плохо", – с горечью замечал Сократ.
Вывод из сказанного, как будто, ясен. Настаивая на исключении логических противоречий, не следует, однако, всякий раз "поверять алгеброй гармонию" и пытаться втиснуть все многообразие противоречий в прокрустово ложе логики.
Логические противоречия недопустимы в науке, но установить, что конкретная теория не содержит их, непросто: то, что в процессе развития и развертывания теории не выведено никаких противоречий, еще не означает, что их в самом деле нет. Научная теория – очень сложная система утверждений. Далеко не всегда противоречие удается обнаружить относительно быстро путем последовательного выведения следствий из ее положений.
Вопрос о непротиворечивости становится яснее, когда теория допускает аксиоматическую формулировку, подобно геометрии Евклида или механике Ньютона. Для большинства аксиоматизированных теорий непротиворечивость доказывается без особого труда.
Есть однако теория, в случае которой десятилетия упорнейших усилий не дали ответа на вопрос, является она непротиворечивой или нет. Это – математическая теория множеств, лежащая в основе всей математики. Немецкий математик Г.Вейль заметил по этому поводу с грустным юмором: "Бог существует, поскольку математика, несомненно, непротиворечива, но существует и дьявол, поскольку доказать ее непротиворечивость мы не можем".