Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Бьерн Страуструп C++.doc
Скачиваний:
12
Добавлен:
07.11.2018
Размер:
2.45 Mб
Скачать

6.4.3 Прикладная программа

Прикладная программа предельно проста. Определяется новая фигура myshape (если ее нарисовать, то она напоминает лицо), а затем приводится функция main(), в которой она рисуется со шляпой. Вначале дадим описание фигуры myshape:

#include "shape.h"

class myshape : public rectangle {

line* l_eye; // левый глаз

line* r_eye; // правый глаз

line* mouth; // рот

public:

myshape(point, point);

void draw();

void move(int, int);

};

Глаза и рот являются отдельными независимыми объектами которые создает конструктор класса myshape:

myshape::myshape(point a, point b) : rectangle(a,b)

{

int ll = neast().x-swest().x+1;

int hh = neast().y-swest().y+1;

l_eye = new line(point(swest().x+2,swest().y+hh*3/4),2);

r_eye = new line(point(swest().x+ll-4,swest().y+hh*3/4),2);

mouth = new line(point(swest().x+2,swest().y+hh/4),ll-4);

}

Объекты, представляющие глаза и рот, выдаются функцией shape_refresh() по отдельности. В принципе с ними можно работать независимо от объекта my_shape, к которому они принадлежат. Это один из способов задания черт лица для строящегося иерархически объекта myshape. Как это можно сделать иначе, видно из задания носа. Никакой тип "нос" не определяется, он просто дорисовывается в функции draw():

void myshape::draw()

{

rectangle::draw();

int a = (swest().x+neast().x)/2;

int b = (swest().y+neast().y)/2;

put_point(point(a,b));

}

Движение фигуры myshape сводится к движению объекта базового класса rectangle и к движению вторичных объектов (l_eye, r_eye и mouth):

void myshape::move(int a, int b)

{

rectangle::move(a,b);

l_eye->move(a,b);

r_eye->move(a,b);

mouth->move(a,b);

}

Наконец, определим несколько фигур и будем их двигать:

int main()

{

screen_init();

shape* p1 = new rectangle(point(0,0),point(10,10));

shape* p2 = new line(point(0,15),17);

shape* p3 = new myshape(point(15,10),point(27,18));

shape_refresh();

p3->move(-10,-10);

stack(p2,p3);

stack(p1,p2);

shape_refresh();

screen_destroy();

return 0;

}

Вновь обратим внимание на то, что функции, подобные shape_refresh() и stack(), работают с объектами, типы которых были определены заведомо после определения этих функций (и, вероятно, после их трансляции).

Вот получившееся лицо со шляпой:

***********

* *

* *

* *

* *

* *

* *

* *

***********

*****************

***********

* *

* ** ** *

* *

* * *

* *

* ******* *

* *

***********

Для упрощения примера копирование и удаление фигур не обсуждалось.

6.5 Множественное наследование

В $$1.5.3 и $$6.2.3 уже говорилось, что у класса может быть несколько прямых базовых классов. Это значит, что в описании класса после : может быть указано более одного класса. Рассмотрим задачу моделирования, в которой параллельные действия представлены стандартной библиотекой классов task, а сбор и выдачу информации обеспечивает библиотечный класс displayed. Тогда класс моделируемых объектов (назовем его satellite) можно определить так:

class satellite : public task, public displayed {

// ...

};

Такое определение обычно называется множественным наследованием. Обратно, существование только одного прямого базового класса называется единственным наследованием.

Ко всем определенным в классе satellite операциям добавляется объединение операций классов task и displayed:

void f(satellite& s)

{

s.draw(); // displayed::draw()

s.delay(10); // task::delay()

s.xmit(); // satellite::xmit()

}

С другой стороны, объект типа satellite можно передавать функциям с параметром типа task или displayed:

void highlight(displayed*);

void suspend(task*);

void g(satellite* p)

{

highlight(p); // highlight((displayed*)p)

suspend(p); // suspend((task*)p);

}

Очевидно, реализация этой возможности требует некоторого (простого) трюка от транслятора: нужно функциям с параметрами task и displayed передать разные части объекта типа satellite.

Для виртуальных функций, естественно, вызов и так выполнится правильно:

class task {

// ...

virtual pending() = 0;

};

class displayed {

// ...

virtual void draw() = 0;

};

class satellite : public task, public displayed {

// ...

void pending();

void draw();

};

Здесь функции satellite::draw() и satellite::pending() для объекта типа satellite будут вызываться так же, как если бы он был объектом типа displayed или task, соответственно.

Отметим, что ориентация только на единственное наследование ограничивает возможности реализации классов displayed, task и satellite. В таком случае класс satellite мог бы быть task или displayed, но не то и другое вместе (если, конечно, task не является производным от displayed или наоборот). В любом случае теряется гибкость.