Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Бьерн Страуструп C++.doc
Скачиваний:
13
Добавлен:
07.11.2018
Размер:
2.45 Mб
Скачать

13.9 Управляющие классы

Концепция абстрактного класса дает эффективное средство для разделения интерфейса и его реализации. Мы применяли эту концепцию и получали постоянную связь между интерфейсом, заданным абстрактным типом, и реализацией, представленной конкретным типом. Так, невозможно переключить абстрактный итератор с одного класса-источника на другой, например, если исчерпано множество (класс set), невозможно перейти на потоки.

Далее, пока мы работаем с объектами абстрактного типа с помощью указателей или ссылок, теряются все преимущества виртуальных функций. Программа пользователя начинает зависеть от конкретных классов реализации. Действительно, не зная размера объекта, даже при абстрактном типе нельзя разместить объект в стеке, передать как параметр по значению или разместить как статический. Если работа с объектами организована через указатели или ссылки, то задача распределения памяти перекладывается на пользователя ($$13.10).

Существует и другое ограничение, связанное с использованием абстрактных типов. Объект такого класса всегда имеет определенный размер, но классы, отражающие реальное понятие, могут требовать память разных размеров.

Есть распространенный прием преодоления этих трудностей, а именно, разбить отдельный объект на две части: управляющую, которая определяет интерфейс объекта, и содержательную, в которой находятся все или большая часть атрибутов объекта. Связь между двумя частями реализуется с помощью указателя в управляющей части на содержательную часть. Обычно в управляющей части кроме указателя есть и другие данные, но их немного. Суть в том, что состав управляющей части не меняется при изменении содержательной части, и она настолько мала, что можно свободно работать с самими объектами, а не с указателями или ссылками на них.

управляющая часть содержательная часть

Простым примером управляющего класса может служить класс string из $$7.6. В нем содержится интерфейс, контроль доступа и управление памятью для содержательной части. В этом примере управляющая и содержательная части представлены конкретными типами, но чаще содержательная часть представляется абстрактным классом.

Теперь вернемся к абстрактному типу set из $$13.3. Как можно определить управляющий класс для этого типа, и какие это даст плюсы и минусы? Для данного класса set можно определить управляющий класс просто перегрузкой операции ->:

class set_handle {

set* rep;

public:

set* operator->() { return rep; }

set_handler(set* pp) : rep(pp) { }

};

Это не слишком влияет на работу с множествами, просто передаются объекты типа set_handle вместо объектов типа set& или set*, например:

void my(set_handle s)

{

for (T* p = s->first(); p; p = s->next())

{

// ...

}

// ...

}

void your(set_handle s)

{

for (T* p = s->first(); p; p = s->next())

{

// ...

}

// ...

}

void user()

{

set_handle sl(new slist_set);

set_handle v(new vector_set v(100));

my(sl);

your(v);

my(v);

your(sl);

}

Если классы set и set_handle разрабатывались совместно,легко реализовать подсчет числа создаваемых множеств:

class set {

friend class set_handle;

protected:

int handle_count;

public:

virtual void insert(T*) = 0;

virtual void remove(T*) = 0;

virtual int is_member(T*) = 0;

virtual T* first() = 0;

virtual T* next() = 0;

set() : handle_count(0) { }

};

Чтобы подсчитать число объектов данного типа set, в управляющем классе нужно увеличивать или уменьшать значение счетчика set_handle:

class set_handle {

set* rep;

public:

set* operator->() { return rep; }

set_handle(set* pp)

: rep(pp) { pp->handle_count++; }

set_handle(const set_handle& r)

: rep(r.rep) { rep->handle_count++; }

set_handle& operator=(const set_handle& r)

{

rep->handle_count++;

if (--rep->handle_count == 0) delete rep;

rep = r.rep;

return *this;

}

~set_handle()

{ if (--rep->handle_count == 0) delete rep; }

};

Если все обращения к классу set обязательно идут через set_handle, пользователь может не беспокоиться о распределении памяти под объекты типа set.

На практике иногда приходится извлекать указатель на содержательную часть из управляющего класса и пользоваться непосредственно им. Можно, например, передать такой указатель функции, которая ничего не знает об управляющем классе. Если функция не уничтожает объект, на который она получила указатель, и если она не сохраняет указатель для дальнейшего использования после возврата, никаких ошибок быть не должно. Может оказаться полезным переключение управляющего класса на другую содержательную часть:

class set_handle {

set* rep;

public:

// ...

set* get_rep() { return rep; }

void bind(set* pp)

{

pp->handle_count++;

if (--rep->handle_count == 0) delete rep;

rep = pp;

}

};

Создание новых производных от set_handle классов обычно не имеет особого смысла, поскольку это - конкретный тип без виртуальных функций. Другое дело - построить управляющий класс для семейства классов, определяемых одним базовым. Полезным приемом будет создание производных от такого управляющего класса. Этот прием можно применять как для узловых классов, так и для абстрактных типов.

Естественно задавать управляющий класс как шаблон типа:

template<class T> class handle {

T* rep;

public:

T* operator->() { return rep; }

// ...

};

Но при таком подходе требуется взаимодействие между управляющим и "управляемым" классами. Если управляющий и управляемые классы разрабатываются совместно, например, в процессе создания библиотеки, то это может быть допустимо. Однако, существуют и другие решения ($$13.10).

За счет перегрузки операции -> управляющий класс получает возможность контроля и выполнения каких-то операций при каждом обращении к объекту. Например, можно вести подсчет частоты использования объектов через управляющий класс:

template<class T>

class Xhandle {

T* rep;

int count;

public:

T* operator->() { count++; return rep; }

// ...

};

Нужна более сложная техника, если требуется выполнять операции как перед, так и после обращения к объекту. Например, может потребоваться множество с блокировкой при выполнении операций добавления к множеству и удаления из него. Здесь, по сути, в управляющем классе приходится дублировать интерфейс с объектами содержательной части:

class set_controller {

set* rep;

// ...

public:

lock();

unlock();

virtual void insert(T* p)

{ lock(); rep->insert(p); unlock(); }

virtual void remove(T* p)

{ lock(); rep->remove(p); unlock(); }

virtual int is_member(T* p)

{ return rep->is_member(p); }

virtual T* first() { return rep->first(); }

virtual T* next() { return rep->next(); }

// ...

};

Писать функции-переходники для всего интерфейса утомительно (а значит могут появляться ошибки), но не трудно и это не ухудшает характеристик программы.

Заметим, что не все функции из set следует блокировать. Как показывает опыт автора, типичный случай, когда операции до и после обращения к объекту надо выполнять не для всех, а только для некоторых функций-членов. Блокировка всех операций, как это делается в мониторах некоторых операционных систем, является избыточной и может существенно ухудшить параллельный режим выполнения.

Переопределив все функции интерфейса в управляющем классе, мы получили по сравнению с приемом перегрузки операции ->, то преимущество, что теперь можно строить производные от set_controller классы. К сожалению, мы можем потерять и некоторые достоинства управляющего класса, если к производным классам будут добавляться члены, представляющие данные. Можно сказать, что программный объем, который разделяется между управляемыми классами уменьшается по мере роста программного объема управляющего класса.