Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Бьерн Страуструп C++.doc
Скачиваний:
12
Добавлен:
07.11.2018
Размер:
2.45 Mб
Скачать

1.4.5 Преобразования типов

Определяемые пользователем преобразования типа, например, такие, как преобразование числа с плавающей точкой в комплексное, которое необходимо для конструктора complex(double), оказались очень полезными в С++. Программист может задавать эти преобразования явно, а может полагаться на транслятор, который выполняет их неявно в том случае, когда они необходимы и однозначны:

complex a = complex ( 1 );

complex b = 1; // неявно: 1 -> complex ( 1 )

a = b + complex ( 2 );

a = b + 2; // неявно: 2 -> complex ( 2)

Преобразования типов нужны в С++ потому, что арифметические операции со смешанными типами являются нормой для языков, используемых в числовых задачах. Кроме того, большая часть пользовательских типов, используемых для "вычислений" (например, матрицы, строки, машинные адреса) допускает естественное преобразование в другие типы (или из других типов).

Преобразования типов способствуют более естественной записи программы:

complex a = 2;

complex b = a + 2; // это означает: operator + ( a, complex ( 2 ))

b = 2 + a; // это означает: operator + ( complex ( 2 ), a )

В обоих случаях для выполнения операции "+" нужна только одна функция, а ее параметры единообразно трактуются системой типов языка. Более того, класс complex описывается так, что для естественного и беспрепятственного обобщения понятия числа нет необходимости что-то изменять для целых чисел.

1.4.6 Множественные реализации

Основные средства, поддерживающие объектно-ориентированное программирование, а именно: производные классы и виртуальные функции,- можно использовать и для поддержки абстракции данных, если допустить несколько реализаций одного типа. Вернемся к примеру со стеком:

template < class T >

class stack

{

public:

virtual void push ( T ) = 0; // чистая виртуальная функция

virtual T pop () = 0; // чистая виртуальная функция

};

Обозначение =0 показывает, что для виртуальной функции не требуется никакого определения, а класс stack является абстрактным, т.е. он может использоваться только как базовый класс. Поэтому стеки можно использовать, но не создавать:

class cat { /* ... */ };

stack < cat > s; // ошибка: стек - абстрактный класс

void some_function ( stack <cat> & s, cat kitty ) // нормально

{

s.push ( kitty );

cat c2 = s.pop ();

// ...

}

Поскольку интерфейс стека ничего не сообщает о его представлении, от пользователей стека полностью скрыты детали его реализации.

Можно предложить несколько различных реализаций стека. Например, стек может быть массивом:

template < class T >

class astack : public stack < T >

{

// истинное представление объекта типа стек

// в данном случае - это массив

// ...

public:

astack ( int size );

~astack ();

void push ( T );

T pop ();

};

Можно реализовать стек как связанный список:

template < class T >

class lstack : public stack < T >

{

// ...

};

Теперь можно создавать и использовать стеки:

void g ()

{

lstack < cat > s1 ( 100 );

astack < cat > s2 ( 100 );

cat Ginger;

cat Snowball;

some_function ( s1, Ginger );

some_function ( s2, Snowball );

}

О том, как представлять стеки разных видов, должен беспокоиться только тот, кто их создает (т.е. функция g()), а пользователь стека (т.е. автор функции some_function()) полностью огражден от деталей их реализации. Платой за подобную гибкость является то, что все операции над стеками должны быть виртуальными функциями.