- •Бьерн Страуструп.
- •Второе дополненное издание
- •Оглавление
- •Глава 2. Описания и константы 38
- •Глава 3. Выражения и операторы 58
- •Глава 4. 80
- •Глава 6. 124
- •Глава 7. 151
- •Глава 8. Шаблоны типа 171
- •Глава 9. 195
- •Глава 10. Потоки 216
- •Глава 11. Проектирование и развитие 238
- •Глава 13. Проектирование библиотек 282
- •Предварительные замечания
- •Об авторе книги:
- •Предисловие
- •Выражение признательности
- •Предисловие к первому изданию
- •Выражение признательности
- •Предварительные замечания
- •Структура книги
- •Замечания по реализации
- •Упражнения
- •Замечания по проекту языка
- •Историческая справка
- •Эффективность и структура
- •Философские замечания
- •Несколько полезных советов
- •Замечание для программистов на с
- •Список литературы
- •1.1 Введение
- •1.2 Парадигмы программирования
- •1.2.1 Процедурное программирование
- •1.2.2 Модульное программирование
- •1.2.3 Абстракция данных
- •1.2.4 Пределы абстракции данных
- •1.2.5 Объектно-ориентированное программирование
- •1.3 "Улучшенный с"
- •1.3.1 Программа и стандартный вывод
- •1.3.2 Переменные и арифметические операции
- •1.3.3 Указатели и массивы
- •1.3.4 Условные операторы и циклы
- •1.3.5 Функции
- •1.3.6 Модули
- •1.4 Поддержка абстракции данных
- •1.4.1 Инициализация и удаление
- •1.4.2 Присваивание и инициализация
- •1.4.3 Шаблоны типа
- •1.4.4 Обработка особых ситуаций
- •1.4.5 Преобразования типов
- •1.4.6 Множественные реализации
- •1.5 Поддержка объектно-ориентированного программирования
- •1.5.1 Механизм вызова
- •1.5.2 Проверка типа
- •1.5.3 Множественное наследование
- •1.5.4 Инкапсуляция
- •1.6 Пределы совершенства
- •Глава 2. Описания и константы
- •2.1 Описания
- •2.1.1 Область видимости
- •2.1.2 Объекты и адреса
- •2.1.3 Время жизни объектов
- •2.2 Имена
- •2.3 Типы
- •2.3.1 Основные типы
- •2.3.2 Неявное преобразование типа
- •2.3.3 Производные типы
- •2.3.5 Указатели
- •2.3.6 Массивы
- •2.3.7 Указатели и массивы
- •2.3.8 Структуры
- •2.3.9 Эквивалентность типов
- •2.3.10 Ссылки
- •2.4 Литералы
- •2.4.1 Целые константы
- •2.4.2 Константы с плавающей точкой
- •2.4.3 Символьные константы
- •2.4.4 Строки
- •2.4.5 Нуль
- •2.5 Поименованные константы
- •2.5.1. Перечисления
- •2.6. Экономия памяти
- •2.6.1 Поля
- •2.6.2. Объединения
- •2.7 Упражнения
- •Глава 3. Выражения и операторы
- •3.1 Калькулятор
- •3.1.1 Анализатор
- •3.1.2 Функция ввода
- •3.1.3 Таблица имен
- •3.1.4 Обработка ошибок
- •3.1.5 Драйвер
- •3.1.6 Параметры командной строки
- •3.2 Сводка операций
- •3.2.1 Скобки
- •3.2.2 Порядок вычислений
- •3.2.3 Инкремент и декремент
- •3.2.4 Поразрядные логические операции
- •3.2.5 Преобразование типа
- •3.2.6 Свободная память
- •3.3 Сводка операторов
- •Синтаксис операторов
- •3.3.1 Выбирающие операторы
- •3.3.2 Оператор goto
- •3.4 Комментарии и расположение текста
- •3.5 Упражнения
- •Глава 4.
- •4.1 Введение
- •4.2 Связывание
- •4.3 Заголовочные файлы
- •4.3.1 Единственный заголовочный файл
- •4.3.2 Множественные заголовочные файлы
- •4.4 Связывание с программами на других языках
- •4.5 Как создать библиотеку
- •4.6 Функции
- •4.6.1 Описания функций
- •4.6.2 Определения функций
- •4.6.3 Передача параметров
- •4.6.4 Возвращаемое значение
- •4.6.5 Параметр-массив
- •4.6.6 Перегрузка имени функции
- •4.6.7 Стандартные значения параметров
- •4.6.8 Неопределенное число параметров
- •4.6.9 Указатель на функцию
- •4.7 Макросредства
- •4.8 Упражнения
- •5. Классы
- •5.1 Введение и краткий обзор
- •5.2 Классы и члены
- •5.2.1 Функции-члены
- •5.2.2 Классы
- •5.2.3 Ссылка на себя
- •5.2.4 Инициализация
- •5.2.5 Удаление
- •5.2.6 Подстановка
- •5.3 Интерфейсы и реализации
- •5.3.1 Альтернативные реализации
- •5.3.2 Законченный пример класса
- •5.4 Еще о классах
- •5.4.1 Друзья
- •5.4.2 Уточнение имени члена
- •5.4.3 Вложенные классы
- •5.4.4 Статические члены
- •5.4.5 Указатели на члены
- •5.4.6 Структуры и объединения
- •5.5 Конструкторы и деструкторы
- •5.5.1 Локальные переменные
- •5.5.2 Статическая память
- •5.5.3 Свободная память
- •5.5.4 Объекты класса как члены
- •5.5.5 Массивы объектов класса
- •5.5.6 Небольшие объекты
- •5.6 Упражнения
- •Глава 6.
- •6.1 Введение и краткий обзор
- •6.2 Производные классы
- •6.2.1 Функции-члены
- •6.2.2 Конструкторы и деструкторы
- •6.2.3 Иерархия классов
- •6.2.4 Поля типа
- •6.2.5 Виртуальные функции
- •6.3 Абстрактные классы
- •6.4 Пример законченной программы
- •6.4.1 Монитор экрана
- •6.4.2 Библиотека фигур
- •6.4.3 Прикладная программа
- •6.5 Множественное наследование
- •6.5.1 Множественное вхождение базового класса
- •6.5.2 Разрешение неоднозначности
- •6.5.3 Виртуальные базовые классы
- •6.6 Контроль доступа
- •6.6.1 Защищенные члены
- •6.6.2 Доступ к базовым классам
- •6.7 Свободная память
- •6.7.1 Виртуальные конструкторы
- •6.7.2 Указание размещения
- •6.8 Упражнения
- •Глава 7.
- •7.1 Введение
- •7.2 Операторные функции
- •7.2.1 Бинарные и унарные операции
- •7.2.2 Предопределенные свойства операций
- •7.2.3 Операторные функции и пользовательские типы
- •7.3 Пользовательские операции преобразования типа
- •7.3.1 Конструкторы
- •7.3.2 Операции преобразования
- •7.3.3 Неоднозначности
- •7.4 Литералы
- •7.5 Большие объекты
- •7.6 Присваивание и инициализация
- •7.7 Индексация
- •7.8 Вызов функции
- •7.9 Косвенное обращение
- •7.10 Инкремент и декремент
- •7.11 Строковый класс
- •7.12 Друзья и члены
- •7.13 Предостережения
- •7.14 Упражнения
- •Глава 8. Шаблоны типа
- •8.1 Введение
- •8.2 Простой шаблон типа
- •8.3 Шаблоны типа для списка
- •8.3.1 Список с принудительной связью
- •8.3.2 Список без принудительной связи
- •8.3.3 Реализация списка
- •8.3.4 Итерация
- •8.4 Шаблоны типа для функций
- •8.4.1 Простой шаблон типа для глобальной функции
- •8.4.2 Производные классы позволяют ввести новые операции
- •8.4.3 Передача операций как параметров функций
- •8.4.4 Неявная передача операций
- •8.4.5 Введение операций с помощью параметров шаблонного класса
- •8.5 Разрешение перегрузки для шаблонной функции
- •8.6 Параметры шаблона типа
- •8.7 Шаблоны типа и производные классы
- •8.7.1 Задание реализации с помощью параметров шаблона
- •8.8 Ассоциативный массив
- •8.9 Упражнения
- •Глава 9.
- •9.1 Обработка ошибок
- •9.1.1 Особые ситуации и традиционная обработка ошибок
- •9.1.2 Другие точки зрения на особые ситуации
- •9.2 Различение особых ситуаций
- •9.3 Имена особых ситуаций
- •9.3.1 Группирование особых ситуаций
- •9.3.2 Производные особые ситуации
- •9.4 Запросы ресурсов
- •9.4.1 Конструкторы и деструкторы
- •9.4.2 Предостережения
- •9.4.3 Исчерпание ресурса
- •9.4.4 Особые ситуации и конструкторы
- •9.5 Особые ситуации могут не быть ошибками
- •9.6 Задание интерфейса
- •9.6.1 Неожиданные особые ситуации
- •9.7 Неперехваченные особые ситуации
- •9.8 Другие способы обработки ошибок
- •9.9 Упражнения
- •Глава 10. Потоки
- •10.1 Введение
- •10.2 Вывод
- •10.2.1 Вывод встроенных типов
- •10.2.2 Вывод пользовательских типов
- •10.3 Ввод
- •10.3.1 Ввод встроенных типов
- •10.3.2 Состояния потока
- •10.3.3 Ввод пользовательских типов
- •10.4 Форматирование
- •10.4.1 Класс ios
- •10.4.1.1 Связывание потоков
- •10.4.1.2 Поля вывода
- •10.4.1.3 Состояние формата
- •10.4.1.4 Вывод целых
- •10.4.1.5 Выравнивание полей
- •10.4.1.6 Вывод плавающих чисел.
- •10.4.2 Манипуляторы
- •10.4.2.1 Стандартные манипуляторы ввода-вывода
- •10.4.3 Члены ostream
- •10.4.4 Члены istream
- •10.5 Файлы и потоки
- •10.5.1 Закрытие потоков
- •10.5.2 Строковые потоки
- •10.5.3 Буферизация
- •10.6 Ввод-вывод в с
- •10.7 Упражнения
- •Глава 11. Проектирование и развитие
- •11.1 Введение
- •11.2 Цели и средства
- •11.3 Процесс развития
- •11.3.1 Цикл развития
- •11.3.2 Цели проектирования
- •11.3.3 Шаги проектирования
- •11.3.3.1 Шаг 1: определение классов
- •11.3.3.2 Шаг 2: определение набора операций
- •11.3.3.3 Шаг 3: указание зависимостей
- •11.3.3.4 Шаг 4: определение интерфейсов
- •11.3.3.5 Перестройка иерархии классов
- •11.3.3.6 Использование моделей
- •11.3.4 Эксперимент и анализ
- •11.3.5 Тестирование
- •11.3.6 Сопровождение
- •11.3.7 Эффективность
- •11.4 Управление проектом
- •11.4.1 Повторное использование
- •11.4.2 Размер
- •11.4.3 Человеческий фактор
- •11.5 Свод правил
- •11.6 Список литературы с комментариями
- •12.1 Проектирование и язык программирования.
- •12.1.1 Игнорирование классов
- •12.1.2 Игнорирование наследования
- •12.1.3 Игнорирование статического контроля типов
- •12.1.4 Гибридный проект
- •12.2 Классы
- •12.2.1 Что представляют классы?
- •12.2.2 Иерархии классов
- •12.2.3 Зависимости в рамках иерархии классов.
- •12.2.4 Отношения принадлежности
- •12.2.5 Принадлежность и наследование
- •12.2.6 Отношения использования
- •12.2.7 Отношения внутри класса
- •12.2.7.1 Инварианты
- •12.2.7.2 Инкапсуляция
- •12.2.8 Программируемые отношения
- •12.3 Компоненты
- •12.4 Интерфейсы и реализации
- •12.5 Свод правил
- •Глава 13. Проектирование библиотек
- •13.1 Введение
- •13.2 Конкретные типы
- •13.3 Абстрактные типы
- •13.4 Узловые классы
- •13.5 Динамическая информация о типе
- •13.5.1 Информация о типе
- •13.5.2 Класс Type_info
- •13.5.3 Как создать систему динамических запросов о типе
- •13.5.4 Расширенная динамическая информация о типе
- •13.5.5 Правильное и неправильное использование динамической информации о типе
- •13.6 Обширный интерфейс
- •13.7 Каркас области приложения
- •13.8 Интерфейсные классы
- •13.9 Управляющие классы
- •13.10 Управление памятью
- •13.10.1 Сборщик мусора
- •13.10.2 Контейнеры и удаление
- •13.10.3 Функции размещения и освобождения
- •13.11 Упражнения
Философские замечания
Язык программирования решает две взаимосвязанные задачи: позволяет программисту записать подлежащие выполнению действия и формирует понятия, которыми программист оперирует, размышляя о своей задаче. Первой цели идеально отвечает язык, который очень "близок машине". Тогда со всеми ее основными "сущностями" можно просто и эффективно работать на этом языке, причем делая это очевидным для программиста способом. Именно это имели в виду создатели С. Второй цели идеально отвечает язык, который настолько "близок к поставленной задаче", что на нем непосредственно и точно выражаются понятия, используемые в решении задачи. Именно это имелось в виду, когда первоначально определялись средства, добавляемые к С.
Связь между языком, на котором мы думаем и программируем, а также между задачами и их решениями, которые можно представить в своем воображении, довольно близка. По этой причине ограничивать возможности языка только поиском ошибок программиста - в лучшем случае опасно. Как и в случае естественных языков, очень полезно обладать, по крайней мере, двуязычием. Язык предоставляет программисту некоторые понятия в виде языковых инструментов; если они не подходят для задачи, их просто игнорируют. Например, если существенно ограничить понятие указателя, то программист будет вынужден для создания структур, указателей и т.п. использовать вектора и операции с целыми. Хороший проект программы и отсутствие в ней ошибок нельзя гарантировать только наличием или отсутствием определенных возможностей в языке.
Типизация языка должна быть особенно полезна для нетривиальных задач. Действительно, понятие класса в С++ проявило себя как мощное концептуальное средство.
Замечания о программировании на языке С++
Предполагается, что в идеальном случае разработка программы делится на три этапа: вначале необходимо добиться ясного понимания задачи, затем определить ключевые понятия, используемые для ее решения, и, наконец, полученное решение выразить в виде программы. Однако, детали решения и точные понятия, которые будут использоваться в нем, часто проясняются только после того, как их попытаются выразить в программе. Именно в этом случае большое значение приобретает выбор языка программирования.
Во многих задачах используются понятия, которые трудно представить в программе в виде одного из основных типов или в виде функции без связанных с ней статических данных. Такое понятие может представлять в программе класс. Класс - это тип; он определяет поведение связанных с ним объектов: их создание, обработку и уничтожение. Кроме этого, класс определяет реализацию объектов в языке, но на начальных стадиях разработки программы это не является и не должно являться главной заботой. Для написания хорошей программы надо составить такой набор классов, в котором каждый класс четко представляет одно понятие. Обычно это означает, что программист должен сосредоточиться на вопросах: Как создаются объекты данного класса? Могут ли они копироваться и (или) уничтожаться? Какие операции можно определить над этими объектами? Если на эти вопросы удовлетворительных ответов не находится, то, скорее всего, это означает, что понятие не было достаточно ясно сформулировано. Тогда, возможно, стоит еще поразмышлять над задачей и предлагаемым решением, а не немедленно приступать к программированию, надеясь в процессе него найти ответы.
Проще всего работать с понятиями, которые имеют традиционную математическую форму представления: всевозможные числа, множества, геометрические фигуры и т.д. Для таких понятий полезно было бы иметь стандартные библиотеки классов, но к моменту написания книги их еще не было. В программном мире накоплено удивительное богатство из таких библиотек, но нет ни формального, ни фактического стандарта на них. Язык С++ еще достаточно молод, и его библиотеки не развились в такой степени, как сам язык.
Понятие не существует в вакууме, вокруг него всегда группируются связанные с ним понятия. Определить в программе взаимоотношения классов, иными словами, установить точные связи между используемыми в задаче понятиями, бывает труднее, чем определить каждый из классов сам по себе. В результате не должно получиться "каши" - когда каждый класс (понятие) зависит от всех остальных. Пусть есть два класса A и B. Тогда связи между ними типа "A вызывает функцию из B", "A создает объекты B", "A имеет член типа B" обычно не вызывают каких-либо трудностей. Связи же типа "A использует данные из B", как правило, можно вообще исключить.
Одно из самых мощных интеллектуальных средств, позволяющих справиться со сложностью, - это иерархическое упорядочение, т.е. упорядочение связанных между собой понятий в древовидную структуру, в которой самое общее понятие находится в корне дерева. Часто удается организовать классы программы как множество деревьев или как направленный ацикличный граф. Это означает, что программист определяет набор базовых классов, каждый из которых имеет свое множество производных классов. Набор операций самого общего вида для базовых классов (понятий) обычно определяется с помощью виртуальных функций ($$6.5). Интерпретация этих операций, по мере надобности, может уточняться для каждого конкретного случая, т.е. для каждого производного класса.
Естественно, есть ограничения и при такой организации программы. Иногда используемые в программе понятия не удается упорядочить даже с помощью направленного ацикличного графа. Некоторые понятия оказываются по своей природе взаимосвязанными. Циклические зависимости не вызовут проблем, если множество взаимосвязанных классов настолько мало, что в нем легко разобраться. Для представления на С++ множества взаимозависимых классов можно использовать дружественные классы ($$5.4.1).
Если понятия программы нельзя упорядочить в виде дерева или направленного ацикличного графа, а множество взаимозависимых понятий не поддается локализации, то, по всей видимости, вы попали в такое затруднительное положение, выйти из которого не сможет помочь ни один из языков программирования. Если вам не удалось достаточно просто сформулировать связи между основными понятиями задачи, то, скорее всего, вам не удастся ее запрограммировать.
Еще один способ выражения общности понятий в языке предоставляют шаблоны типа. Шаблонный класс задает целое семейство классов. Например, шаблонный класс список задает классы вида "список объектов T", где T может быть произвольным типом. Таким образом, шаблонный тип указывает, как получается новый тип из заданного в качестве параметра. Самые типичные шаблонные классы - это контейнеры, в частности, списки, массивы и ассоциативные массивы.
Напомним, что можно легко и просто запрограммировать многие задачи, используя только простые типы, структуры данных, обычные функции и несколько классов из стандартных библиотек. Весь аппарат построения новых типов следует привлекать только тогда, когда он действительно необходим.
Вопрос "Как написать хорошую программу на С++?" очень похож на вопрос "Как пишется хорошая английская проза?". На него есть два ответа: "Нужно знать, что вы, собственно, хотите написать" и "Практика и подражание хорошему стилю". Оба совета пригодны для С++ в той же мере, что и для английского языка, и обоим достаточно трудно следовать.
