Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
гл1-1.doc
Скачиваний:
7
Добавлен:
07.11.2018
Размер:
520.7 Кб
Скачать

1.3.3. Представление звуковых данных в двоичном коде

Звук – это упругая продольная волна в воздушной среде. Чтобы ее представить в виде, читаемом компьютером, необходимо выполнить следующие преобразования (рис. 1.4.). Звуковой сигнал преобразовать в электрический аналог звука с помощью микрофона. Электрический аналог получается в непрерывной форме и не пригоден для обработки на цифровом компьютере. Чтобы перевести сигнал в цифровой код, надо пропустить его через аналого-цифровой преобразователь (АЦП). При воспроизведении происходит обратное преобразование цифро-аналоговое (через ЦАП). Позже будет показано, что конструктивно АЦП и ЦАП находятся в звуковой карте компьютера.

Во время оцифровки сигнал дискретизируется по времени и по уровню (см. рис.1.5.). Дискретизация по времени выполняется следующим образом: весь период времени T разбивается на малые интервалы времени t, точками t1,t2…tn . Предполагается, что в течение интервала t уровень сигнала изменяется незначительно и может с некоторым допущением считаться постоянным. Величина =1/t называется частотой дискретизации. Она измеряется в герцах (гц) – количество измерений в течение секунды.

Дискретизация по уровню, она еще называется квантованием, выполняется так: область изменения сигнала от самого малого значения Xmin до самого большого значения Xmax разбивается на N равных квантов, промежутков величиной

X=( Xmax- Xmin)/N

Точками X1,X2,…Xn. Xi=Xmin+X(i-1)

Каждый квант связывается с его порядковым номером, т.е. целым числом, которое легко может быть представлено в двоичной системе счисления. Если сигнал после дискретизации по времени (напомним, его принимаем за постоянную величину) попадает в промежуток Xi-1X Xi, то ему в соответствие ставится код i.

Возникают две задачи:

  • первая; как часто по времени надо измерять сигнал,

  • вторая; с какой точностью надо измерять сигнал, чтобы получить при воспроизведении звук удовлетворительного качества.

Ответ на первую задачу дает теорема Найквиста, которая утверждает, что, если сигнал оцифрован с частотой , то высшая «слышимая» частота будет не более /2. Вторая задача решается подбором числа уровней так, чтобы звук не имел высокого уровня шума и «электронного» оттенка звучания (точнее это характеризуется уровнем нелинейных искажений). Попутно заметим, что число уровней берется как 2n. Чтобы измерение занимало целое число байт; n выбирают n=8 или n=16, т.е. каждое измерение занимает один или два байта.

Высокое качество воспроизведения получается в формате лазерного аудио диска при следующих параметрах оцифровки: частота дискретизации - 44.1 кгц, квантование - 16 бит, т.е. x=(Xmax-Xmin)/216 . Таким образом, 1 сек. стерео звука займет

2байт*44100байт/сек*2кан*1сек=176 400 байт дисковой памяти. Качество звука при этом получается очень высоким.

Для телефонных переговоров удовлетворительное качество получается при частоте дискретизации 8 кгц и частоте квантования 255 уровней, т.е. 1 байт, при этом 1 сек звуковой записи займет на диске

1 байт*8000байт/сек*1сек=8000 байт