Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
stuff.doc
Скачиваний:
50
Добавлен:
06.11.2018
Размер:
14.24 Mб
Скачать

2.7.4. Вычисление работы, моментов инерции и угловых скоростей

Ниже будут разобраны некоторые задачи, которые показывают практическую значимость указанных произведений в различных разделах физики.

Как уже было сказано, скалярное произведение векторов применяется для вычисления скалярной проекции вектора на ось и при разложении вектора по заданным направлениям. В физике его используют при вычислении работы силы при перемещении точки ее приложения на вектор а также мощности силы.

Работа силы

Если точка движется по направлению действия силы, то по определению работа силы равна произведению величины силы на длину перемещения: Если точка движется под углом к направлению действия силы, то работает только та составляющая силы которая направлены по линии перемещения, перпендикулярная же составляющая вектора силы уравновешивается сопротивлением. Скалярная составляющая вектора в направлении вектора равна Поэтому то есть работа равна скалярному произведению векторов и

Мощность силы мощность – скалярная физическая величина, характеризующая воздействие силы на движение точки. Она равна скалярному произведению силы на скорость точки в данной системе отсчета:

96. Вычислить, какую работу производит сила когда ее точка приложения перемещается из начала в конец вектора

97. Вычислить, какую работу производит сила когда ее точка приложения перемещается из точки в точку

98. Даны три силы, приложенные к одной точке: Вычислить, какую работу производит равнодействующая этих сил, когда её точка приложения, двигаясь прямолинейно, перемещается из точки в точку

99. Даны три силы и Найти работу равнодействующей силы и силы если её точка приложения перемещается из начала в конец вектора

100. Определить длину наименьшей дуги большого круга, проходящего через точки земной поверхности, долгота и широта которых равны соответственно

Моментом приложенной к точке А силы f относительно точки В называется вектор Расстояние от точки В до линии силы называется плечом силы относительно точки В.

101. Определить момент силы приложенной к точке А, относительно точки В в каждом из следующих случаев: а)  b)  с)  d)

102. Сила приложена к точке Определить величину и направляющие косинусы момента этой силы относительно начала координат.

103. Сила приложена к точке Определить величину и направляющие косинусы момента этой силы относительно точки

104. Даны три силы, приложенные к одной точке и Определить величину и направляющие косинусы момента равнодействующей этих сил относительно точки

105. Показать, что: а) момент силы относительно точки не меняется, если точку приложения силы перемещать по прямой, вдоль которой сила действует; b) момент равнодействующей нескольких сил, приложенных к одной и той же точке, равен сумме моментов составляющих сил относительно той же точки.

106. Сила приложена в точке с радиус-вектором Найти: a) момент силы относительно начала координат; b) плечо силы; c) составляющую силы, перпендикулярную к

107. Длина гаечного ключа 30 см. С какой силой, перпендикулярной ключу, рабочий нажимает на ключ при завинчивании гайки, если момент этой силы равен

Вращательное движение, угловая скорость и угловое ускорение

Движение тела называется вращательным, если оно движется так, что две его точки, например А и В, остаются неподвижными. Можно доказать, что при вращательном движении твердого тела траектории всех его точек – окружности, плоскости которых перпендикулярны оси вращения, а центры лежат на оси. Если точка М движется по окружности радиуса R, то скорость точки будет иметь численное значение, равное

Величина называется угловой скоростью вращения радиуса R. При круговом движении величина скорости точки вычисляется по формуле Направлена скорость по касательной к окружности, то есть перпендикулярно радиусу, проведенному в точку М.

108. Твердое тело вращается с угловой скоростью относительно некоторой фиксированной оси. Доказать, что скорость любой точки этого тела равна где – вектор, начало которого находится в произвольно выбранной точке на оси вращения, а конец – в данной точке.

Решение. Так как любая точка тела движется по окружности, то (- центр окружности, по которой перемещается точка лежит на оси вращения). Так как есть плечо вектора угловой скорости, то Вектор по направлению совпадает с вектором . Из сказанного следует, что

= =

Здесь  – любая точка на оси вращения. Итак, для всякой точки вращающегося тела скорость определяется формулой Эйлера - вектор угловой скорости.

109. Велосипедист едет с постоянной скоростью по прямолинейному участку дороги. Найти мгновенные скорости точек лежащих на ободе колеса на горизонтальном диаметре, вертикальном диаметре и диаметре составляющем с поверхностью земли угол 450.

Решение. При качении колеса по земле все его точки участвуют одновременно в двух движениях: вдоль земли с постоянной скоростью направление которой все время горизонтально, и вокруг оси с касательной скоростью величина которой постоянна, а направление меняется. При качении без проскальзывания скорости и равны по величине. Значение мгновенной скорости любой точки колеса можно найти, складывая векторы и по любому из правил сложения векторов.

110. Линейная скорость точек на рабочей поверхности шлифовального круга не должна превышать 100м/сек. Определить предельную угловую скорость круга диаметром 30 см.

111. Найти предельную скорость движения автомобиля, если на этой скорости его колесо диаметром 1,1 м вращается, делая 310 об/мин.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]