Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Використання ПММ в с.г..doc
Скачиваний:
122
Добавлен:
05.11.2018
Размер:
2.35 Mб
Скачать

2.3. Способи очистки нафтопродуктів

Нафтопродукти, що одержують в результаті переробки нафти, ще непридатні до застосування, тому що містять не лише корисні сполуки, але й такі, які негативно впливають на їх експлуатаційні властивості: сірчисті; кисневі; азотисті; смолисті речовини; ненасичені вуглеводні.

Для підвищення якості нафтопродукти очищають різними способами залежно від якості сировини, способу виробництва нафтопродукту і умов його використання. Існуючі способи очистки поділяють на:

    • хімічні (сірчанокислотна, лужна, плюмбітами і хлоридами металів, гідрогенізація та ін.) – грунтуються на тому, що небажані сполуки нафтопродуктів вступають у хі­мічні реакції з реагентом;

    • фізичні (селективними розчинниками і різними адсорбентами) – грунтуються на розчиненні небажаних сполук або їх адсорбції на поверхнево-активних речовинах.

Очистка сірчаною кислотою – один із найстаріших способів. Полягає в тому, що сірчана кислота по різному реагує з вуглеводнями і домішками, які містяться в нафтопродуктах. При нормальній температурі кислота майже не реагує з парафіновими і нафтеновими вуглеводнями. Ароматичні вуглеводні при незначній кількості кислоти практично також не реагують з нею.

Ненасичені вуглеводні утворюють продукти полімеризації – кислі і середні ефіри сірчаної кислоти. Сірчисті сполуки, за винятком сірководню та елементної сірки, також видаляються з нафтопродуктів сірчаною кислотою.

Для очистки нафтопродуктів використовують 96%-у сірчану кислоту. Витрати кислоти для очистки палив становить 0,2...0,8%, для дистилятних масел – 5...6%, а залишкових – до 30% маси нафтопродукту.

Сірчану кислоту застосовують при очистці прямогонних нафтопродуктів. Для очистки крекінг-продуктів сірчана кислота непридатна, оскільки, вступаючи в реакцію з ненасиченими вуглеводнями, призводить до великих втрат продукту, що очищають.

Очистка лугом – доповнює сірчанокислотну. В процесі відбувається нейтралізація кислих сполук, що утворилися в результаті обробки сірчаною кислотою.

Гідроочистка – обробка сировини воднем при підви­щеній температурі і тиску в присутності каталізаторів – один з нових і найперспективніших способів очистки нафтопродуктів від сірчистих сполук та інших небажаних до­мішок.

Селективна очистка масел – один з найпоширеніших способів очистки моторних масел, відбувається за допомогою розчинників, які мають вибіркову розчинну властивість. Існує два способи селективної очистки:

    • розчинення небажаних домішок, вуглеводневий склад масла залишається без змін;

    • вилучення основної частини масла, до­мішки при цьому не розчиняються.

2.4 Загальні показники фізико-хімічних і експлуатаційних властивостей нафтопродуктів

Поняття «якість продукту» нерозривно пов'язане з його застосуванням. Якість продукту виявляється через влас­тивості, що необхідні для оцінки його придатності до зас­тосування за призначенням. Кожний з показників якості по-своєму важливий, тому сукупність їх дозволяє оцінити якість нафтопродуктів.

В хіммотології всі властивості нафтопродуктів поділяють за найбільш важливими ознаками на:

    • фізико-хімічні – визначаються стандартними методами аналізів в лабораторних умовах, до них відносять густину, випарність, температури спалаху, помутніння, застигання, вміст механічних домішок, води тощо;

    • експлуатаційні – характеризують продукт безпосередньо у вузлі, агрегаті, механічні, до них відносять детонаційну стійкість, схильність до нагаро- лако- і осадкоутворень (стабільність), миючі, корозійні, протиспрацювальні та інші властивості..

Густина – це маса речовини, яка міститься в одиниці об'єму. В системі СИ густина вимірюється в кг/м3, але на практиці найчастіше мають справу з безмірною величиною – відносною густиною. Відносна густина – відношення маси речовини, при температурі визначення, до маси води при 4 °С, при однаковому їх об'ємі. Густина води при 4 °С прийнята за одиницю.

У стандартах передбачається визначати відносну густину при 20°С (). У тих випадках, коли температура визначення густини відрізняється від 20°С одержане значення густини при і °С, приводять до стандартної за формулою:

(2.1)

де γ – температурна поправка на 1°С (знаходять за розрахунковими таблицями; змінюється в межах 0,000515…0,000910).

Визначають густину в виробничих умовах з допомогою нафтоденсиметрів, але існують й інші методи, які застосовують при лабораторних випробуваннях (за допомогою пікнометрів, гідростатичних ваг).

Для визначення густини в'язких рідин, коли неможливий безпосередній замір за допомогою нафтоденсиметра, готують суміш рідини, густину якої досліджують, з розчинником відомої густини у відповідному співвідношенні (наприклад 1:2). Визначають густину суміші, а потім перераховують густину в'язкої рідини за формулою:

(2.2)

де ρх – густина в'язкої рідини;

ρсум – густина суміші;

ρрозч – густина розчинника.

В’язкість – це властивість рідини чинити опір взаємному переміщенню її шарів під дією зовнішньої сили. Зовнішньою ознакою в'язкості є ступінь рухомості рідини: чим менше в'язкість, тим рідина рухоміша, і навпаки. В'язкість залежить головним чином від хімічного складу і температури нафтопродуктів. Розрізняють в'язкості:

    • динамічну;

    • кінематичну;

    • умовну.

Динамічна в’язкість (η) – коефіцієнт внутрішнього тертя. Одиницею вимірювання є Паскаль·секунда (Па·с), яка чисельно дорівнює опору, що виникає при взаємному переміщенні двох шарів рідини площею 1 м2, віддалених на 1 м один від одного, з швидкістю 1 м/с під дією сили в 1 Н. Допускається застосовувати одиницю Пауз – П(г/см2·с), 1 П = 0,1 Па·с.

Кінематична в’язкість (γ) – питомий коефіцієнт внутрішнього тертя, відношення динамічної в'язкості до густини, при тій же температурі. Одиниця вимірювання – м2/с або мм2/с = 10–6м2/с:

(2.3)

Умовна в’язкість – величина, яка показує у скільки разів в'язкість нафтопродукту при температурі вимірювання більша або менша в'язкості дистильованої води при температурі 20 °С. Умовна в'язкість вимірюється в градусах умовної в'язкості (°ВУ).

Для переходу від умовної в'язкості до кінематичної використовують спеціальні таблиці або формулу:

(2.4)

Стабільність нафтопродуктів. Під стабільністю нафто­продуктів розуміють їх здатність зберігати свої властивості в допустимих межах для конкретних експлуатаційних умов. Умовно розрізняють стабільність: фізичну та хімічну.

Фізичну стабільність нафтопродуктів визначають як можливість зберіга­ти фракційний склад (зміни визиваються втратою найбільш легких фракцій в результаті випаровування) і однорідність. Фізичну стабільність оцінюють і контролюють періодично, визначаючи густину, фракційний склад, тиск насиченої пари, температуру помутніння і застигання, вміст механічних домішок і води, та інші показники.

Під хімічною стабільністю нафтопродуктів розуміють їх здатність зберігати без зміни свій хімічний склад, бо в умовах експлуатації та довготривалого зберігання деякі з сполук (сірчисті, азотисті, кисневі, металоорганічні) можуть вступати в реакції окислення, полімеризації, конденсації, кінцевим результатом яких є накопичення смолистих речовин, лакових відкладень, нагарів.

Фактичні смоли – це смолисті речовини, які уже присутні в нафтопродуктах. Вміст фактичних смол нормується стандартами і визначається випаровуванням гарячим повітрям певної кількості нафтопродукту (100 мл) при підвищеній температурі (для бензину 150°С, дизельного палива 250°С) за залишком в мг, одержаним після випаровування.

Рис. 2.2. Залежність корозійного зносу від

теплового режиму роботи двигуна

Потенціальні смоли – це смолисті речовини, які можуть утворюватися в процесі окислення і полімеризації, головним чином ненасичених вуглеводів нафтопродукту.

Одна з основних вимог до нафтопродуктів — це мінімальна корозія металів з якими вони контактують. Під корозією розуміють самовільне руйнування твердих тіл внаслідок хімічних і електрохімічних процесів, що розвиваються на поверхні тіл при їх взаємодії із зовнішнім середовищем. Корозія металів відбувається внаслідок їх взаємодії з хімічно активними речовинами, що містяться в нафтопродуктах (водорозчинні кислоти, луги, органічні кислоти тощо). Від вуглеводнів нафтопродукту метали не кородують.

Сірка шкідлива не тільки з точки зору корозійного спрацювання деталей, а також і тому, що при роботі двигунів на паливі з високим вмістом сірки утворюється більше твердого і щільного нагару, частинки якого, потрапляючи в масло, прискорюють зношування циліндро-поршневої групи та зменшують термін роботи самого масла.