Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2-Лаб. прак. 3-73 стр..Молекулярка..лабы 9-10 и....doc
Скачиваний:
48
Добавлен:
04.11.2018
Размер:
1.35 Mб
Скачать

2. Явления переноса в термодинамически неравновесных системах

Виды процессов переноса

В предыдущих главах мы рассматривали исключительно равновесные свойства вещества или термодинамические процессы, которые квазистатически (то есть очень медленно) переводят систему из одного равновесного состояния в другое. Мы не рассматривали сами процессы перехода из одного состояния системы в другое. В изолированной макроскопической системе равновесное состояние характеризуется однородным распределением плотности (концентрации) вещества, температуры и отсутствием упорядоченного движения газа или жидкости. Система с неоднородным распределением параметров (плотности, температуры и т.д.) будет стремиться к равновесию, то есть к состоянию, характеризующемуся неизменностью этих параметров во времени и отсутствием в нем потоков (упорядоченного движения молекул газа или жидкости). Этот процесс называется релаксацией. Процессы выравнивания сопровождаются переносом ряда физических величин (массы, импульса, энергии) и называются потому явлениями переноса. скорость приближения неравновесной системы к равновесию должна быть связана с градиентами соответствующих параметров состояния 1. Эксперимент подтверждает это положение, которое позволяет описать явления диффузии (выравнивание плотности или концентрации за счет переноса массы в объеме), теплопроводности (выравнивание температуры по объему в результате переноса тепловой энергии хаотического движения частиц) и вязкости (выравнивание скоростей движения различных слоев текучей среды в связи с переносом импульса частиц сплошной среды).

1 Если некоторая скалярная величина А распределена в пространстве неравномерно, то быстроту (скорость) изменения этой величины по выбранному направлению характеризует градиент.

Градиент величины А ( ) – вектор, направленный в каждой точке пространства в сторону быстрейшего возрастания этой величины, и численно равный изменению А на единицу длины этого направления. Если величина А меняется только вдоль одного направления (Оx), то модуль градиента:

.

За время dt через площадку, перпендикулярную к направлению переноса (х) будет перенесена некоторая физическая величина dB (масса, импульс, энергия), определяемая уравнением:

dSdt,

где  - коэффициент пропорциональности, называемый коэффициентом переноса. Знак - означает, что направление возрастания величины А и направление переноса величины В противоположны, то есть перенос всегда происходит в сторону убыли величины А.

Законы переноса массы, энергии и импульса положены в основу теории неравновесных процессов, или физической кинетики. Прежде чем ознакомиться с законами физической кинетики, введем кинематические характеристики с помощью которых описывается движение молекул в среде.

Число столкновений и

средняя длина свободного пробега молекул

Молекулы газа, находясь в непрерывном хаотическом движении, сталкиваются друг с другом. Каково же среднее количество столкновений z за единицу времени, и какова средняя длина пробега молекулы l от одного столкновения до другого? Минимальное расстояние, на которое могут сблизиться молекулы, называется эффективным диаметром молекулы (d). Он зависит от скорости сталкивающихся молекул, а значит от температуры газа.

.

Для определения z представим себе такую упрощенную модель: молекула в виде шарика диаметром d, которая движется среди других «застывших» молекул. Эта молекула столкнется только с теми молекулами, центры которых находятся на расстояниях, равных или меньших d (рис. 2.1). Можно представить, что это будет совершаться в некоторой области, которая по форме будет близка к цилиндру. В объёме V данного цилиндра среднее количество столкновений молекулы за секунду равно

z = n Vv= n d 2 v.

Если учесть движения остальных молекул, то

z = n d2 v,

тогда средняя длина свободного пробега обратно пропорциональна концентрации молекул

.

При нормальных условиях l = 710-8 м. Длину свободного пробега молекул можно определить экспериментально на основе изучения явлений переноса в газах.

Законы физической кинетики

Диффузия. При диффузии наблюдается перенос как однородных, так и разнородных газов. В результате этого происходит постепенное перемешивание масс газа, перенос массы газа. В химически чистых газах при постоянной температуре диффузия возникает вследствие неодинаковой плотности в различных частях объема газа. Явление диффузии для химически чистого газа подчиняется закону Фика:

.

Плотность потока массы вещества , проходящего через единичную площадку, пропорциональна коэффициенту диффузии (измеряется в м2/с),  градиент плотности, равный скорости изменения плотности на единице длины х. Знак минус показывает, что перенос масс происходит в направлении убывания плотности. Коэффициент диффузии численно равен плотности потока массы при градиенте плотности, равном единице. Согласно кинетической теории газов:

.

Поскольку средняя длина свободного пробега молекул обратно пропорциональна концентрации молекул n см. уравнение (2.4), а давление р тем больше, чем выше n, то коэффициент диффузии обратно пропорционален давлению газа.

Вязкость. Механизм внутреннего трения между параллельными слоями газа или жидкости, которые движутся относительно друг друга с различными скоростями, заключается в том, что из-за хаотического теплового движения происходит обмен молекулами между слоями. В результате этого импульс слоя, движущегося быстрее, уменьшается, а движущегося медленнее – увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее.

Сила внутреннего трения между слоями газа (жидкости) подчиняется

закону Ньютона

,

  динамическая вязкость, или коэффициент внутреннего трения, или коэффициент вязкости; dv/dx – градиент скорости, показывающий быстроту изменения скорости в направлении х, которое перпендикулярно направлению движения слоев; S – площадь, на которую действует сила F.

Взаимодействие двух слоев согласно второму закону Ньютона можно рассматривать как процесс, при котором изменение импульса одного слоя по отношению к другому за единицу времени равно по модулю действующей на каждый слой силе. Тогда плотность потока импульса

.

Знак минус указывает на то, что импульс переносится в направлении убывания скорости.

Динамическая вязкость  численно равна плотности потока импульса при градиенте скорости, равном единице, и вычисляется по формуле:

.

Поскольку плотность  прямо пропорциональна давлению р, а длина свободного пробега l обратно пропорциональна давлению, то коэффициент внутреннего трения не зависит от давления. Он определяется главным образом природой химических веществ и температурой.

Закон Ньютона для внутреннего трения используется, например, при выводе так называемой формулы Пуазейля, определяющей объём V вязкой жидкости, которая протекает за время t по трубе радиуса r и длины l из-за разницы давлений на краях трубы, равной Δp:

. (2.1)

Теплопроводность. В газах перенос тепла происходит от нагретой части с температурой Т1 к более холодной с температурой Т2. Передача тепла осуществляется вследствие постоянных столкновений молекул, имеющих большую кинетическую энергию с молекулами, энергия которых меньше. Постепенно идет процесс выравнивания средних кинетических энергий молекул. Перенос энергии в форме теплоты подчиняется закону Фурье

,

 плотность теплового потока;  коэффициент теплопроводности; градиент температуры, равный скорости изменения температуры на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что при теплопроводности энергия переносится в направлении убывания температуры.

Коэффициент теплопроводности

,

где сV удельная теплоемкость газа при постоянном объеме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объеме). Коэффициент теплопроводности  измеряется в Вт/(мК).

Итак, в газах явления диффузии, вязкости и теплопроводности имеют немало общего:

  1. все эти явления обусловливаются переносом: явление диффузии – переносом массы, явление теплопроводности – переносом энергии, явление вязкости – переносом импульса;

  2. все явления сопровождаются рассеянием энергии;

  3. в механизме всех трех явлений большую роль играет средняя длина свободного пробега l.

Сравним формулы, которые описывают явления переноса (табл. 2.1). Из формул вытекают простые зависимости между , D и :

 =  D;

; .

Таблица 2.1

Сопоставление явлений диффузии, вязкости и теплопроводности газов

Явление

Перенос

Уравнение переноса

коэффициент

Диффузия

массы

Теплопроводность

энергии в форме тепла

Внутреннее

трение

импульса