
- •А.Л. Ахтулов, л.Н. Ахтулова, с.И. Смирнов основы микропроцессорной техники
- •Содержание
- •Глава 1. Структура, архитектура и функционирование Электонных Вычислительных Машин и микропроцессорных систем
- •1.1. История развития информации и вычислительной техники
- •1.2. Этапы развития электронно-вычислительной техники
- •1.3. Классическая архитектура электронной вычислительной машины и принципы фон Неймана
- •1.4. Архитектура мини-эвм и микропроцессора
- •1.5. Принцип работы микро-эвм
- •Глава 2. Числа, кодирование и арифметические операции
- •2.1. Арифметические основы микропроцессорной техники
- •2.2. Двоичная арифметика
- •2.3. Дополнительный код
- •2.4. Арифметика в дополнительном коде
- •2.5. Группировка бит
- •2.6. Буквенно-цифровой код
- •Глава 3. Основные элементы микропроцессорной техники
- •3.1. Логические элементы
- •3.2. Электронные логические вентили
- •3.3. Комбинации логических элементов
- •3.4. Практическая реализация логических вентилей
- •3.5. Задержка на распространение сигнала
- •3.6. Ограничения по входу и выходу
- •3.7. Тристабильные элементы
- •3.8. Мультиплексор и демультиплексоры
- •3.9. Дешифраторы
- •3.10. Модули интегральных микросхем
- •3.11. Триггеры и защелки
- •3.12. Тактирование фронтом сигнала
- •3.15. Триггеры с дополнительными входами для установки и очистки
- •3.16. Регистры и сдвиговые регистры
- •3.17. Счетчики
- •Глава 4. Программируемые логические устройства
- •4.1. Программируемая логическая матрица
- •4.2. Программируемая матричная логика
- •4.3. Сложные программируемые логические устройства
- •4.4. Программируемые вентильные матрицы
- •4.5. Пример счетчика с прямым/обратным счетом
- •4.6. Временные диаграммы
- •4.7. Модель конечного автомата
- •4.8. Синтез конечных автоматов
- •Глава 5. Полупроводниковая память
- •5.1. Микросхемы rom
- •5.2. Затенение rom
- •5.3. Прожигаемая при изготовлении память rom
- •4.4. Память prom
- •5.5. Память eprom
- •5.6. Системная память
- •5.7. Быстродействие озу
- •5.8. Динамическая и статическая память
- •5.9. Память типа dram
- •5.10. Статическая память
- •5.13. Подсистема памяти
- •5.14. Организация кэш-памяти
- •5.15. Принципы организации основной памяти в современных компьютерах
- •5.16. Виртуальная память и организация защиты памяти
- •5.17. Модули памяти
- •5.18. Использование оперативной и постоянной памяти
- •Глава 6. Основы микропроцессорной техники
- •6.1. Архитектура простой микро-эвм
- •6.2. Структура простейшей памяти
- •6.3. Состав команд
- •6.4. Структура элементарного микропроцессора
- •6.5. Функционирование микро-эвм
- •6.9. Код коррекции ошибок
- •Глава 7. Микропроцессорная система
- •7.1. Классификация
- •7.2. Определение понятия микропроцессор
- •7.3. Основные характеристики микропроцессора
- •7.4. Шинная структура связей
- •7.5. Логическая структура микропроцессора
- •7.6. Режимы работы микропроцессорной системы
- •7.7. Архитектура микропроцессорных систем
- •7.8. Типы микропроцессорных систем
- •Глава 8. Организация обмена информацией
- •8.1. Циклы обмена микропроцессорной системы
- •8.2. Шины микропроцессорной системы
- •8.3. Организация циклов обмена информацией
- •8.4. Прохождение сигналов по магистрали
- •8.5. Функции устройств магистрали
- •Глава 9. Функционирование процессора
- •9.1. Адресация операндов
- •9.2. Регистры процессора
- •9.3. Система команд процессора
- •Глава 10. Организация микроконтроллеров
- •10.1. Процессорное ядро и память микроконтроллеров
- •10.2. Классификация и структура микроконтроллеров
- •10.3. Система команд процессора мк
- •10.4. Схема синхронизации мк
- •10.5. Память программ и данных мк
- •10.6. Порты ввода/вывода
- •Библиографический список
- •Основы микропроцессорной техники
- •Издательство государственного образовательного учреждения высшего профессионального образования
- •625000, Тюмень, ул. Володарского, 38
- •6 25039, Г. Тюмень, ул. Киевская, 52
5.13. Подсистема памяти
В основе реализации иерархии памяти современных компьютеров лежат два принципа: принцип локальности обращений и соотношение стоимость/производительность. Принцип локальности обращений говорит о том, что большинство программ к счастью не выполняют обращений ко всем своим командам и данным равновероятно, а оказывают предпочтение некоторой части своего адресного пространства.
Иерархия памяти современных компьютеров строится на нескольких уровнях, причем более высокий уровень меньше по объему, быстрее и имеет большую стоимость в пересчете на байт, чем более низкий уровень. Уровни иерархии взаимосвязаны: все данные на одном уровне могут быть также найдены на более низком уровне, и все данные на этом более низком уровне могут быть найдены на следующем нижележащем уровне и так далее, пока мы не достигнем основания иерархии.
Иерархия памяти обычно состоит из многих уровней, но в каждый момент времени мы имеем дело только с двумя близлежащими уровнями. Минимальная единица информации, которая может либо присутствовать, либо отсутствовать в двухуровневой иерархии, называется блоком. Размер блока может быть либо фиксированным, либо переменным. Если этот размер зафиксирован, то объем памяти является кратным размеру блока.
Успешное или неуспешное обращение к более высокому уровню называются соответственно попаданием (hit) или промахом (miss). Попадание - есть обращение к объекту в памяти, который найден на более высоком уровне, в то время как промах означает, что он не найден на этом уровне. Доля попаданий (hit rate) или коэффициент попаданий (hit ratio) есть доля обращений, найденных на более высоком уровне. Иногда она представляется процентами. Доля промахов (miss rate) есть доля обращений, которые не найдены на более высоком уровне.
Поскольку повышение производительности является главной причиной появления иерархии памяти, частота попаданий и промахов является важной характеристикой. Время обращения при попадании (hit time) есть время обращения к более высокому уровню иерархии, которое включает в себя, в частности, и время, необходимое для определения того, является ли обращение попаданием или промахом. Потери на промах (miss penalty) есть время для замещения блока в более высоком уровне на блок из более низкого уровня плюс время для пересылки этого блока в требуемое устройство (обычно в процессор). Потери на промах далее включают в себя две компоненты: время доступа (access time) - время обращения к первому слову блока при промахе, и время пересылки (transfer time) - дополнительное время для пересылки оставшихся слов блока. Время доступа связано с задержкой памяти более низкого уровня, в то время как время пересылки связано с полосой пропускания канала между устройствами памяти двух смежных уровней.
Чтобы описать некоторый уровень иерархии памяти надо ответить на следующие четыре вопроса:
1. Где может размещаться блок на верхнем уровне иерархии? (размещение блока).
2. Как найти блок, когда он находится на верхнем уровне? (идентификация блока).
3. Какой блок должен быть замещен в случае промаха? (замещение блоков).
4. Что происходит во время записи? (стратегия записи).