
- •Екзаменаційні питпння за курсом «тау – частина1»
- •1. Дайте визначення поняття керування?
- •2. Які алгоритми роботи об’єктів курування вам вібомі?
- •3. Що нази вається вектором вихідного стану об’єкта керування?
- •4. Що називаться структурною схемою сау?
- •5. Класифікація систем автоматичного керування?
- •6. Що називається помилкою керування?
- •7. Назвіть основні причини відхилення вектора вихідного стану від необхідного значення?
- •8. Для яких цілей необхідні керуючі впливи?
- •9. Що називаеться керуючим пристроєм?
- •10. Що називається системою автоматичного керування?
- •11. Які принципи керування вам відомі?
- •12. Яка сау називається замкнутою?
- •13. У чому складаеться сутність принципу керування по збурюванню?
- •14. Основні переваги і недоліки сау, побудоватних на бузі принципу керування по збурюванню?
- •15. У чому полягає сутність керування по відхиленню?
- •16. Для яких цілей використовується зворотний зв’язок у сау? Які види зворотних зв’язків вам відомі?
- •17. У чому полягають основні особливості принципу комбінованого керування?
- •18. Які основні переваги і недоліки сау з комбінованим керуванням Вам відомі?
- •19. Що називається статичною характеристикою сау і її елементів?
- •20. Які види статичних характеристик сау Вам відомі?
- •21. Які особливості властиві астатичним елементам?
- •22. Дайте визначення сатичної сау?
- •23. Дайте визначення астатичної сау?
- •24. Які способи з’єднання елементів сау вам відомі?
- •25. Як визначити статичну характеристику сау, що складається з послідовно з’єднаних елементів?
- •26 Як визначити статичну характеристику сау, що складається з паралельно з’єднаних елементів?
- •27. Як визначити статичну характеристику сау при з'єднанні лементів з використанням зворотного зв'язка?
- •28. Для яких цілей використається лінеаризація статичних характеристик сау?
- •29. Опишіть основні принципи лінеаризації статичних характеристик сау?
- •30. Що розуміється під поняттям динамічні режими роботи сау?
- •31.Який математичний апарат використається для аналізу динамічних
- •33. Як представити рівняння руху сау у формі Коші?
- •34.Які методи рішення диференціальних рівнянь Вам відомі?
- •35. Що називається перетворенням Лапласа. Як воно виробляється?
- •36. Які основні властивості перетворення Лапласа Вам відомі?
- •37.Що називається передатною функцією сау?
- •38. Що називається характеристичним рівнянням системи?
- •39. Частотні характеристики сау і їхнє експериментальне визначення?
- •40. Змінні стани і рівняння стану динамічної системи?
- •41. Типові динамічні ланки і їхні рівняння, передатні функції, тимчасові і частотні характеристики?
- •42. Правила структурних перетворень сау і визначення передатних функцій складних систем?
- •43.Застосування теорії графів для визначення передатних функцій складних багатоконтурних сау?
- •44. Прямі показники якості перехідних процесів?
- •45. Оцінка якості перехідних процесів по частотних характеристиках?
- •46. Кореневі критерії оцінки якості перехідних процесів?
- •47. Інтегральні методи оцінки якості перехідних процесів?
- •48. Характеристики основних елементів сау: тиристорний перетворювач, широтно-імпульсний перетворювач, датчик струму, датчик швидкості, електродвигун постійного струму, асинхронний двигун?
- •49. Стійкість сау. Алгебраїчні критерії стійкості?
- •50. Стійкість сау. Частотні критерії стійкості?
- •51. Статистичні характеристики сау і зв'язок між ними?
- •52. Комбіновані аср. Принцип інваріантості?
- •53. Каскадні аср. Розрахунок каскадних аср?
- •54. Взаємозалежні системи регулювання. Методи розрахунку зв'язаних систем регулювання. Принцип автономності?
- •55. Регулювання об'єктів із запізнюванням?
- •56. Системи регулювання нестаціонарними об'єктами?
- •57. Робастні системи керування і чутливість?
- •58. Синтез сау методом логарифмічних частотних характеристик для об'єктів з астатизмом другого порядку?
- •59. Синтез сау методом логарифмічних частотних характеристик для об'єктів з астатизмом першого порядку?
- •60. Синтез сау методом логарифмічних частотних характеристик для статичних об'єктів?
- •61. Експрес методи розрахунку настроювання одно контурних систем регулювання?
- •62. Модальне керування в сау?
- •63. Синтез систем керування з регулятором стану?
- •Екзаменаційні питпння за курсом «тау – частина2»
- •2. Нелінійні характеристики (однозначні, неоднозначні) і їхній математичний опис.
- •3. Методи лінеаризації нелінійних характеристик.
- •4. Дослідження нелінійних систем (метод гармонійного балансу).
- •5. Дослідження нелінійних систем (метод фазових траєкторій).
- •6. Нелінійні системи (побудова перехідного процесу по фазовій траєкторії).
- •7. Нелінійні системи (побудова фазових траєкторій методом ізоклін).
- •8. Нелінійні системи (знаходження результуючої статичної характеристики при паралельному, послідовному, зустрічно-паралельному з'єднанні нелінійних елементів).
- •9. Методи дослідження стійкості нелінійних систем. Другий (прямій) метод Ляпунова.
- •10. Методи дослідження стійкості нелінійних систем. Критерій абсолютної стійкості в.М. Попова.
- •11. Поняття про дискретні системи автоматичного керування і їхня класифікація.
- •12. Релейні системи автоматичного керування. Визначення, особливості, призначення, достоїнства й недоліки.
- •13. Особливості динаміки релейних систем автоматичного керування.
- •14. Фазові портрети релейних систем.
- •15. Імпульсні системи автоматичного керування. Визначення, особливості, призначення, класифікація, достоїнства й недоліки.
- •16. Особливості динаміки імпульсних систем автоматичного керування.
- •17. Математичний апарат імпульсних систем (ґратчаста функція, зміщена ґратчаста функція).
- •18. Математичний апарат імпульсних систем (різниця ґратчастих функцій, різницеві рівняння).
- •19. Математичний апарат імпульсних систем (z-перетворення і його основні властивості).
- •20. Передатні функції імпульсного фільтра.
- •21. Цифрові системи автоматичного керування. Визначення, особливості, призначення, достоїнства.
- •23. Опишіть типову структуру одно контурної сау.
- •29. Розрахунок помилок у цас.
- •30. Способи побудови перехідних процесів у цас.
- •31. Порядок синтезу цсу для об'єктів з астатизмом другого порядку.
- •32. Порядок синтезу цсу для об'єктів з астатизмом першого порядку.
- •34. Модальне керування в цсу.
- •35. Поняття оптимальної системи автоматичного керування.
- •36. Послідовність проектування оптимальної сау.
- •45. Класифікація адаптивних і самонастроювальних систем.
- •46. Самонастроювальні сау з оптимізацією статичних режимів.
- •47. Самонастроювальні сау з оптимізацією динамічних режимів.
- •48. Методи пошуку екстремуму функції настроювальних параметрів.
- •49. Найпростіша що самоорганізується сау.
- •50. Поняття про системи, що самонавчаються, автоматичного керування.
53. Каскадні аср. Розрахунок каскадних аср?
В зависимости от характера корректирующего импульса различают следующие многоконтурные АСР: комбинированные, сочетающие обычный замкнутый контур регулирования с дополнительным каналом воздействия, по которому через динамический компенсатор вводится импульс по возмущению; каскадные — двухконтурные замкнутые АСР, построенные на базе двух стандартных регуляторов и использующие для регулирования кроме основной выходной координаты дополнительный промежуточный выход; с дополнительным импульсом по производной от промежуточной выходной координаты.
Каскадные системы применяют для автоматизации объектов, обладающих большой инерционностью по каналу регулирования, если можно выбрать менее инерционную по отношению к наиболее опасным возмущениям промежуточную координату и использовать для нее то же регулирующее воздействие, что и для основного выхода объекта.
В этом случае в систему регулирования (рис. 1.19) включают два регулятора — основной (внешний) регулятор, служащий для стабилизации основного выхода объекта у, и вспомогательный (внутренний) регулятор, предназначенный для регулирования вспомогательной координаты у1. Заданием для вспомогательного регулятора служит выходной сигнал основного регулятора.
Рис
1
Расчет каскадной АСР предполагает определение настроек основного R и вспомогательного R1 регуляторов при заданных динамических характеристиках объекта по основном W(p) и W1(p) вспомогательному каналам. Поскольку настройки основного и вспомогательного регуляторов взаимозависимы, расчет их проводят методом итераций.
На каждом шаге итерации рассчитывают приведенную одноконтурную АСР, в которой один из регуляторов условно относится к эквивалентному объекту.
(1)
(2)
В зависимости от первого шага итерации различают два метода расчета каскадных АСР.
1-й метод. Расчет начинают с основного регулятора. Метод используют в тех случаях, когда инерционность вспомогательного канала намного меньше, чем основного.
На первом шаге принимают допущение о том, что рабочая частота основного контура (wр) намного меньше, чем вспомогательного (wpl), И при w = wр
Таким образом, в первом приближении настройки 5° основного регулятора 1 не зависят от R1(р) и находятся по Wэо(p).
На втором шаге рассчитывают настройки вспомогательного регулятора Sl1 для эквивалентного объекта (2) с передаточной функцией W1э(p), в которую подставляют R(p,S°).
В случае приближенных расчетов ограничиваются первыми двумя шагами. При точных расчетах их продолжают до тех пор, пока настройки регуляторов, найденные в двух последовательных итерациях, не совпадут с заданной точностью.
54. Взаємозалежні системи регулювання. Методи розрахунку зв'язаних систем регулювання. Принцип автономності?
Объекты с несколькими входами и выходами, взаимно связанными между собой, называют многосвязными объектами
Описывается матрицей передаточных функции
Для односвязных объектов WjK(p)=0 при j<>k, и матрица (1.35) превращается в диагональную
Существует два различных подхода к автоматизации многосвязных объектов:
1. несвязанное регулирование отдельных координат с помощью одноконтурных АСР;
2. связанное регулирование с применением многоконтурных систем, в которых внутренние перекрестные связи объекта компенсируются внешними динамическими связями между отдельными контурами регулирования. Рассмотрим методы расчета на примере системы с двумя входами и двумя выходами
Выведем передаточную функцию эквивалентного объекта с регулятором R1 и R2
Передаточная функция эквивалентного объекта имеет вид
На основе формул (1.36) и (1.37) можно предположить, что если на какой-то частоте модуль корректирующей поправки будет пренебрежимо мал по сравнению с амплитудно-частотной характеристикой прямого канала, поведение эквивалентного объекта на этой частоте будет определяться прямым каналом.
Для качественной оценки взаимного влияния контуров регулирования используют комплексный коэффициент связанности
Если на этих частотах KCB~0, объект можно рассматривать как односвязнын; при KCB> 1 целесообразно поменять местами прямые и перекрестные каналы («перекрестное» регулирование); при 0<KCB<1 расчет одноконтурных АСР необходимо вести по передаточным функциям эквивалентных объектов (1.36) и (1.37).
Основой построения систем связанного регулирования является принцип автономности.
При этом сигнал xp1 можно рассматривать как возмущение для y2, а сигнал xp2 — как возмущение для y1. Тогда перекрестные каналы играют роль каналов возмущения (рис. 1.35). Для компенсации этих возмущений в систему регулирования вводят динамические устройства с передаточными функциями R12(p) и R21(p)
Практически обеспечить полную автономность невозможно, поэтому она рассматривается в определенном диапазоне частот.