
- •Екзаменаційні питпння за курсом «тау – частина1»
- •1. Дайте визначення поняття керування?
- •2. Які алгоритми роботи об’єктів курування вам вібомі?
- •3. Що нази вається вектором вихідного стану об’єкта керування?
- •4. Що називаться структурною схемою сау?
- •5. Класифікація систем автоматичного керування?
- •6. Що називається помилкою керування?
- •7. Назвіть основні причини відхилення вектора вихідного стану від необхідного значення?
- •8. Для яких цілей необхідні керуючі впливи?
- •9. Що називаеться керуючим пристроєм?
- •10. Що називається системою автоматичного керування?
- •11. Які принципи керування вам відомі?
- •12. Яка сау називається замкнутою?
- •13. У чому складаеться сутність принципу керування по збурюванню?
- •14. Основні переваги і недоліки сау, побудоватних на бузі принципу керування по збурюванню?
- •15. У чому полягає сутність керування по відхиленню?
- •16. Для яких цілей використовується зворотний зв’язок у сау? Які види зворотних зв’язків вам відомі?
- •17. У чому полягають основні особливості принципу комбінованого керування?
- •18. Які основні переваги і недоліки сау з комбінованим керуванням Вам відомі?
- •19. Що називається статичною характеристикою сау і її елементів?
- •20. Які види статичних характеристик сау Вам відомі?
- •21. Які особливості властиві астатичним елементам?
- •22. Дайте визначення сатичної сау?
- •23. Дайте визначення астатичної сау?
- •24. Які способи з’єднання елементів сау вам відомі?
- •25. Як визначити статичну характеристику сау, що складається з послідовно з’єднаних елементів?
- •26 Як визначити статичну характеристику сау, що складається з паралельно з’єднаних елементів?
- •27. Як визначити статичну характеристику сау при з'єднанні лементів з використанням зворотного зв'язка?
- •28. Для яких цілей використається лінеаризація статичних характеристик сау?
- •29. Опишіть основні принципи лінеаризації статичних характеристик сау?
- •30. Що розуміється під поняттям динамічні режими роботи сау?
- •31.Який математичний апарат використається для аналізу динамічних
- •33. Як представити рівняння руху сау у формі Коші?
- •34.Які методи рішення диференціальних рівнянь Вам відомі?
- •35. Що називається перетворенням Лапласа. Як воно виробляється?
- •36. Які основні властивості перетворення Лапласа Вам відомі?
- •37.Що називається передатною функцією сау?
- •38. Що називається характеристичним рівнянням системи?
- •39. Частотні характеристики сау і їхнє експериментальне визначення?
- •40. Змінні стани і рівняння стану динамічної системи?
- •41. Типові динамічні ланки і їхні рівняння, передатні функції, тимчасові і частотні характеристики?
- •42. Правила структурних перетворень сау і визначення передатних функцій складних систем?
- •43.Застосування теорії графів для визначення передатних функцій складних багатоконтурних сау?
- •44. Прямі показники якості перехідних процесів?
- •45. Оцінка якості перехідних процесів по частотних характеристиках?
- •46. Кореневі критерії оцінки якості перехідних процесів?
- •47. Інтегральні методи оцінки якості перехідних процесів?
- •48. Характеристики основних елементів сау: тиристорний перетворювач, широтно-імпульсний перетворювач, датчик струму, датчик швидкості, електродвигун постійного струму, асинхронний двигун?
- •49. Стійкість сау. Алгебраїчні критерії стійкості?
- •50. Стійкість сау. Частотні критерії стійкості?
- •51. Статистичні характеристики сау і зв'язок між ними?
- •52. Комбіновані аср. Принцип інваріантості?
- •53. Каскадні аср. Розрахунок каскадних аср?
- •54. Взаємозалежні системи регулювання. Методи розрахунку зв'язаних систем регулювання. Принцип автономності?
- •55. Регулювання об'єктів із запізнюванням?
- •56. Системи регулювання нестаціонарними об'єктами?
- •57. Робастні системи керування і чутливість?
- •58. Синтез сау методом логарифмічних частотних характеристик для об'єктів з астатизмом другого порядку?
- •59. Синтез сау методом логарифмічних частотних характеристик для об'єктів з астатизмом першого порядку?
- •60. Синтез сау методом логарифмічних частотних характеристик для статичних об'єктів?
- •61. Експрес методи розрахунку настроювання одно контурних систем регулювання?
- •62. Модальне керування в сау?
- •63. Синтез систем керування з регулятором стану?
- •Екзаменаційні питпння за курсом «тау – частина2»
- •2. Нелінійні характеристики (однозначні, неоднозначні) і їхній математичний опис.
- •3. Методи лінеаризації нелінійних характеристик.
- •4. Дослідження нелінійних систем (метод гармонійного балансу).
- •5. Дослідження нелінійних систем (метод фазових траєкторій).
- •6. Нелінійні системи (побудова перехідного процесу по фазовій траєкторії).
- •7. Нелінійні системи (побудова фазових траєкторій методом ізоклін).
- •8. Нелінійні системи (знаходження результуючої статичної характеристики при паралельному, послідовному, зустрічно-паралельному з'єднанні нелінійних елементів).
- •9. Методи дослідження стійкості нелінійних систем. Другий (прямій) метод Ляпунова.
- •10. Методи дослідження стійкості нелінійних систем. Критерій абсолютної стійкості в.М. Попова.
- •11. Поняття про дискретні системи автоматичного керування і їхня класифікація.
- •12. Релейні системи автоматичного керування. Визначення, особливості, призначення, достоїнства й недоліки.
- •13. Особливості динаміки релейних систем автоматичного керування.
- •14. Фазові портрети релейних систем.
- •15. Імпульсні системи автоматичного керування. Визначення, особливості, призначення, класифікація, достоїнства й недоліки.
- •16. Особливості динаміки імпульсних систем автоматичного керування.
- •17. Математичний апарат імпульсних систем (ґратчаста функція, зміщена ґратчаста функція).
- •18. Математичний апарат імпульсних систем (різниця ґратчастих функцій, різницеві рівняння).
- •19. Математичний апарат імпульсних систем (z-перетворення і його основні властивості).
- •20. Передатні функції імпульсного фільтра.
- •21. Цифрові системи автоматичного керування. Визначення, особливості, призначення, достоїнства.
- •23. Опишіть типову структуру одно контурної сау.
- •29. Розрахунок помилок у цас.
- •30. Способи побудови перехідних процесів у цас.
- •31. Порядок синтезу цсу для об'єктів з астатизмом другого порядку.
- •32. Порядок синтезу цсу для об'єктів з астатизмом першого порядку.
- •34. Модальне керування в цсу.
- •35. Поняття оптимальної системи автоматичного керування.
- •36. Послідовність проектування оптимальної сау.
- •45. Класифікація адаптивних і самонастроювальних систем.
- •46. Самонастроювальні сау з оптимізацією статичних режимів.
- •47. Самонастроювальні сау з оптимізацією динамічних режимів.
- •48. Методи пошуку екстремуму функції настроювальних параметрів.
- •49. Найпростіша що самоорганізується сау.
- •50. Поняття про системи, що самонавчаються, автоматичного керування.
51. Статистичні характеристики сау і зв'язок між ними?
Любой процесс (случайный) однозначно может быть определен тремя переменными:
1.
-
среднее значение
2. D – дисперсия (отклонение от средины)
3.
-
корреляционная функция (вместо может
использоваться S(
)
– спектральная плотность.
для
эргодического процесса
Как и для детерминированных процессов имеет место интегральная зависимость:
(1) – интегральная
свертка
-
функция веса
Найдем математическое ожидание от левой и правой части (1)
(2)
М и интеграл можно поменять местами
(3)
Из (3) следует что линейная система преобразовывается в математическое ожидание так же как и любой другой детерминированный сигнал.
Рассмотрим как
преобразует САУ
(4)
Если задана S()
входных и выходных сигналов то справедливы
следующие выражения
(5) – представляет
собой преобразование Фурье
(6) – обратное
преобразование Фурье
Используя (5) и (6) запишем
(7)
И
(8)
Особое место
имеет случайные процессы, у которых
- белый шум. Если случайный процесс имеет
белый шум, то справедливо выражение
(9)
Физически корреляционная функция характеризует тесноту связей между точками случайного процесса.
Спектральная плотность характеризует тесноту связей сежду точками частотной характеристики.
52. Комбіновані аср. Принцип інваріантості?
В зависимости от характера корректирующего импульса различают следующие многоконтурные АСР: комбинированные, сочетающие обычный замкнутый контур регулирования с дополнительным каналом воздействия, по которому через динамический компенсатор вводится импульс по возмущению; каскадные — двухконтурные замкнутые АСР, построенные на базе двух стандартных регуляторов и использующие для регулирования кроме основной выходной координаты дополнительный промежуточный выход; с дополнительным импульсом по производной от промежуточной выходной координаты.
Комбинированные системы регулирования применяют при автоматизации объектов, подверженных действию существенных контролируемых возмущений.
На рис. 1.7 приведен фрагмент функциональной схемы автоматизации выпарной установки, в которой одним из наиболее сильных возмущений является расход питания. Основная задача регулирования — стабилизация концентрации упаренного раствора за счет изменения расхода греющего пара — выполняется регулятором 1. Кроме сигнала регулятора, на клапан, регулирующий подачу пара, через динамический компесатор 2 поступает корректирующий импульс по расходу питания.
Основой расчета подобных систем является принцип инвариантности: отклонение выходной координаты системы от заданного значения должно быть, тождественно равным нулю при любых задающих или возмущающих воздействиях.
Отклонение выходной координаты системы от зданного значения должно быть =0 при любых задающих возмущающих воздействиях.
Рассмотрим условие инвариантности для разомкнутой системы
При наличии возмущения [XB(p) <>0] условие инвариантности (1.19) выполняется, если
Таким образом, для обеспечения инвариантности системы регулирования по отношению к какому-либо возмущению необходимо установить динамический компенсатор, передаточная функция которого равна отношению передаточных функций объекта по каналам возмущения и регулирования, взятому с обратным знаком. Выведем условия инвариантности для комбинированных АСР. Для случая, когда сигнал от компенсатора подается на вход объекта (см. рис. 1.9 а), структурная схема комбинированной АСР преобразуется к последовательному соединению разомкнутой системы и замкнутого контура
Для системы изображенной на рис 2 можно записать
Таким образом, при подключении выхода компенсатора на вход регулятора передаточная функция компенсатора, полученная из условия инвариантности, будет зависеть от характеристик не только объекта, но и регулятора. Условия физической реализуемости инвариантных АСР. Одной из основных проблем, возникающих при построении инвариантных систем регулирования, является их физическая реализуемость, т. е. реализуемость компенсатора, отвечающего условиям (1.20) или (1.20 а) В отличие от обычных промышленных регуляторов, структура которых задана и требуется лишь рассчитать их настройки, структура динамического компенсатора полностью определяется соотношением динамических характеристик объекта по каналам возмущения и регулирования и может оказаться очень сложной, а при неблагоприятном соотношении этих характеристик - физически нереализуемой.
«Идеальные» компенсаторы физически нереализуемы в следующих двух случаях.
1. Если время чистого запаздывания по каналу регулирования больше, чем по каналу возмущения.
2. Если в передаточной функции компенсатора степень полинома в числителе больше, чем степень полинома в знаменателе.