
- •Екзаменаційні питпння за курсом «тау – частина1»
- •1. Дайте визначення поняття керування?
- •2. Які алгоритми роботи об’єктів курування вам вібомі?
- •3. Що нази вається вектором вихідного стану об’єкта керування?
- •4. Що називаться структурною схемою сау?
- •5. Класифікація систем автоматичного керування?
- •6. Що називається помилкою керування?
- •7. Назвіть основні причини відхилення вектора вихідного стану від необхідного значення?
- •8. Для яких цілей необхідні керуючі впливи?
- •9. Що називаеться керуючим пристроєм?
- •10. Що називається системою автоматичного керування?
- •11. Які принципи керування вам відомі?
- •12. Яка сау називається замкнутою?
- •13. У чому складаеться сутність принципу керування по збурюванню?
- •14. Основні переваги і недоліки сау, побудоватних на бузі принципу керування по збурюванню?
- •15. У чому полягає сутність керування по відхиленню?
- •16. Для яких цілей використовується зворотний зв’язок у сау? Які види зворотних зв’язків вам відомі?
- •17. У чому полягають основні особливості принципу комбінованого керування?
- •18. Які основні переваги і недоліки сау з комбінованим керуванням Вам відомі?
- •19. Що називається статичною характеристикою сау і її елементів?
- •20. Які види статичних характеристик сау Вам відомі?
- •21. Які особливості властиві астатичним елементам?
- •22. Дайте визначення сатичної сау?
- •23. Дайте визначення астатичної сау?
- •24. Які способи з’єднання елементів сау вам відомі?
- •25. Як визначити статичну характеристику сау, що складається з послідовно з’єднаних елементів?
- •26 Як визначити статичну характеристику сау, що складається з паралельно з’єднаних елементів?
- •27. Як визначити статичну характеристику сау при з'єднанні лементів з використанням зворотного зв'язка?
- •28. Для яких цілей використається лінеаризація статичних характеристик сау?
- •29. Опишіть основні принципи лінеаризації статичних характеристик сау?
- •30. Що розуміється під поняттям динамічні режими роботи сау?
- •31.Який математичний апарат використається для аналізу динамічних
- •33. Як представити рівняння руху сау у формі Коші?
- •34.Які методи рішення диференціальних рівнянь Вам відомі?
- •35. Що називається перетворенням Лапласа. Як воно виробляється?
- •36. Які основні властивості перетворення Лапласа Вам відомі?
- •37.Що називається передатною функцією сау?
- •38. Що називається характеристичним рівнянням системи?
- •39. Частотні характеристики сау і їхнє експериментальне визначення?
- •40. Змінні стани і рівняння стану динамічної системи?
- •41. Типові динамічні ланки і їхні рівняння, передатні функції, тимчасові і частотні характеристики?
- •42. Правила структурних перетворень сау і визначення передатних функцій складних систем?
- •43.Застосування теорії графів для визначення передатних функцій складних багатоконтурних сау?
- •44. Прямі показники якості перехідних процесів?
- •45. Оцінка якості перехідних процесів по частотних характеристиках?
- •46. Кореневі критерії оцінки якості перехідних процесів?
- •47. Інтегральні методи оцінки якості перехідних процесів?
- •48. Характеристики основних елементів сау: тиристорний перетворювач, широтно-імпульсний перетворювач, датчик струму, датчик швидкості, електродвигун постійного струму, асинхронний двигун?
- •49. Стійкість сау. Алгебраїчні критерії стійкості?
- •50. Стійкість сау. Частотні критерії стійкості?
- •51. Статистичні характеристики сау і зв'язок між ними?
- •52. Комбіновані аср. Принцип інваріантості?
- •53. Каскадні аср. Розрахунок каскадних аср?
- •54. Взаємозалежні системи регулювання. Методи розрахунку зв'язаних систем регулювання. Принцип автономності?
- •55. Регулювання об'єктів із запізнюванням?
- •56. Системи регулювання нестаціонарними об'єктами?
- •57. Робастні системи керування і чутливість?
- •58. Синтез сау методом логарифмічних частотних характеристик для об'єктів з астатизмом другого порядку?
- •59. Синтез сау методом логарифмічних частотних характеристик для об'єктів з астатизмом першого порядку?
- •60. Синтез сау методом логарифмічних частотних характеристик для статичних об'єктів?
- •61. Експрес методи розрахунку настроювання одно контурних систем регулювання?
- •62. Модальне керування в сау?
- •63. Синтез систем керування з регулятором стану?
- •Екзаменаційні питпння за курсом «тау – частина2»
- •2. Нелінійні характеристики (однозначні, неоднозначні) і їхній математичний опис.
- •3. Методи лінеаризації нелінійних характеристик.
- •4. Дослідження нелінійних систем (метод гармонійного балансу).
- •5. Дослідження нелінійних систем (метод фазових траєкторій).
- •6. Нелінійні системи (побудова перехідного процесу по фазовій траєкторії).
- •7. Нелінійні системи (побудова фазових траєкторій методом ізоклін).
- •8. Нелінійні системи (знаходження результуючої статичної характеристики при паралельному, послідовному, зустрічно-паралельному з'єднанні нелінійних елементів).
- •9. Методи дослідження стійкості нелінійних систем. Другий (прямій) метод Ляпунова.
- •10. Методи дослідження стійкості нелінійних систем. Критерій абсолютної стійкості в.М. Попова.
- •11. Поняття про дискретні системи автоматичного керування і їхня класифікація.
- •12. Релейні системи автоматичного керування. Визначення, особливості, призначення, достоїнства й недоліки.
- •13. Особливості динаміки релейних систем автоматичного керування.
- •14. Фазові портрети релейних систем.
- •15. Імпульсні системи автоматичного керування. Визначення, особливості, призначення, класифікація, достоїнства й недоліки.
- •16. Особливості динаміки імпульсних систем автоматичного керування.
- •17. Математичний апарат імпульсних систем (ґратчаста функція, зміщена ґратчаста функція).
- •18. Математичний апарат імпульсних систем (різниця ґратчастих функцій, різницеві рівняння).
- •19. Математичний апарат імпульсних систем (z-перетворення і його основні властивості).
- •20. Передатні функції імпульсного фільтра.
- •21. Цифрові системи автоматичного керування. Визначення, особливості, призначення, достоїнства.
- •23. Опишіть типову структуру одно контурної сау.
- •29. Розрахунок помилок у цас.
- •30. Способи побудови перехідних процесів у цас.
- •31. Порядок синтезу цсу для об'єктів з астатизмом другого порядку.
- •32. Порядок синтезу цсу для об'єктів з астатизмом першого порядку.
- •34. Модальне керування в цсу.
- •35. Поняття оптимальної системи автоматичного керування.
- •36. Послідовність проектування оптимальної сау.
- •45. Класифікація адаптивних і самонастроювальних систем.
- •46. Самонастроювальні сау з оптимізацією статичних режимів.
- •47. Самонастроювальні сау з оптимізацією динамічних режимів.
- •48. Методи пошуку екстремуму функції настроювальних параметрів.
- •49. Найпростіша що самоорганізується сау.
- •50. Поняття про системи, що самонавчаються, автоматичного керування.
48. Характеристики основних елементів сау: тиристорний перетворювач, широтно-імпульсний перетворювач, датчик струму, датчик швидкості, електродвигун постійного струму, асинхронний двигун?
Тиристорный
преобразователь.,
как элемент САУ, представляет собой
импульсную систему (СИФУ и выпрямитель
ВП), преобразующую входной управляющий
сигнал (напряжение
)
в функцию моментов отпирания тиристоров,
изменяющую напряжение на входе двигателя
,
и описываемую дифференциальным
уравнением:
|
(1) |
где
–
постоянная времени тиристорного
преобразователя (
сек
для мостовой полностью управляемой
схемы);
–
передаточный
коэффициент тиристорного преобразователя
.
При изменении
напряжения управления на некоторую
величину
изменяется
напряжение на входе двигателя
.
Тогда уравнение (1) примет вид:
Переходя к операторной форме записи, получаем:
Отсюда выражение для передаточной функции тиристорного преобразователя принимает вид:
Широтно-импульсный
преобразователь
(ШИП) представляет набор электронных
ключей, обеспечивающих импульсное
изменение напряжения на нагрузке,
подключенной к выходу этого преобразователя.
В современной технике частоты коммутации
ШИП лежат в пределах (2—50) кГц. Поэтому
запаздывание в такой системе принимается
равным нулю. Во многих приложениях ШИП
представляется как безинерционный
элемент с передаточной функцией
вида:
,
где
,
–
величины приращений изображений
выходного и входного сигнала ШИП
соответственно.
Более точное представление процессов в САУ, содержащей ШИП, может быть получено с использованием дискретного преобразования Лапласа.
Датчик тока (измерительный трансформатор тока) с фильтром, как элемент САУ, описывается дифференциальным уравнением вида:
|
(2) |
где
–
передаточный коэффициент датчика тока;
–
номинальный ток
тиристорного преобразователя;
–
постоянная
времени фильтра в обратной связи по
току.
При изменении
тока двигателя
изменяется
напряжение на выходе
,
тогда уравнение (2) в приращениях примет
вид:
.
Это уравнение в операторной форме записи представляется как:
.
Тогда передаточная функция датчика тока с фильтром примет вид:
.Для
практических расчетов можно пренебречь
постоянной времени фильтра (
,
тогда передаточная функция датчика
тока примет вид безинерционного звена:
.
Датчики скорости. Наиболее широко применяемым в системах управления технологическим оборудованием датчиком скорости является тахогенератор, на выходе которого включается дополнительный фильтр. Эти элементы САУ, описываются следующим дифференциальным уравнением:
|
(3) |
где
–
коэффициент обратной связи по скорости;
–
постоянная
времени фильтра в обратной связи по
скорости.
Тахогенератор
является безинерционным звеном
,
а инерционность вносится за счет фильтра
(
).
При изменении скорости тахогенератора
на
изменится
и напряжение на выходе —
.
Тогда уравнение (3) в приращениях примет
вид:
,
Переходя к операторной форме записи, получаем:
,
Преобразовывая это уравнение, получаем передаточную функцию обратной связи по скорости:
.
Электродвигатель постоянного тока. Двигатель постоянного тока, как элемент САУ, описывается дифференциальными уравнениями якорной цепи и механической части двигателя:
|
(4) |
где
–
соответственно индуктивность и активное
сопротивление якорной цепи;
—
соответственно
ток якорной цепи и ток нагрузки;
–
конструктивные
постоянные двигателя;
–
момент инерции
двигателя.
При изменении
напряжения на входе двигателя на
некоторую величину
изменяются
ток двигателя
и
частота вращения двигателя
и,
пренебрегая обратной связью по противоЭДС
двигателя
,
получаем уравнения якорной цепи и
механической части двигателя в
приращениях:
|
(5) |
Преобразовывая
уравнения (5) и, считая
,
переходим к операторной форме записи
данных уравнений:
|
(6) |
Из уравнений (6) получаем выражения для передаточных функций якорной цепи и механической части двигателя:
где
–
электромагнитная постоянная двигателя,
—
электромеханическая
постоянная двигателя.
Согласно этой системе получаем, что развернутая структурная схема двигателя принимает вид, показанный на рис.1.
Рис. 1. Развернутая структурная схема двигателя
Свертывая развернутую схему, двигатель можно представить одним колебательным звеном (рис. 2):
,
где
.
Рис. 2. Свернутая структурная схема двигателя
Асинхронный электродвигатель является наиболее широко используемой электрической машиной. Это объясняется простотой его конструкции и достаточно жесткими механическими характеристиками. Механическая характеристика имеет вид, представленный на рис. 3.
Рис. 3. Сравнительные механические характеристики электродвигателей.
Конструктивно асинхронный двигатель состоит из ротора, на котором расположена короткозамкнутая обмотка типа "беличья клетка", и статора. На статоре расположены обмотки управления, число которых определяется числом фаз питающего напряжения. Синхронная частота вращения вала двигателя определяется как
,
где
–
частота питающего напряжения
–
число пар полюсов
статорной обмотки.
Для управления асинхронными двигателями используются частотные и амплитудные методы. В первом случае регулирование частоты вращения осуществляется путем изменения частоты питающего напряжения. Во втором случае для изменения частоты вращения вала асинхронного двигателя изменяется напряжение, подаваемое на статорные обмотки двигателя.
Точное математическое описание процессов, происходящих в асинхронном двигателе, представляется системой уравнений Парка-Горева. Оно используется при детальном рассмотрении систем автоматического управления с такими двигателями. Но так как, электромагнитные процессы, протекающие в асинхронных двигателях достаточно быстротечны, при их рассмотрении в большинстве приложений рассматривают только электромеханическую их составляющую. Поэтому передаточная функция асинхронного двигателя в большинстве приложений представляется как
,
где
–
коэффициент пропорциональности между
угловой скоростью вала и управляющим
сигналом,
–
электромеханическая
постоянная времени двигателя и
исполнительного механизма.