
- •1) Концепции естествознания – основа научного миропонимания. Связь естествознания с экономикой, управлением, нашей специальностью.
- •2) Гуманитарные, фундаментальные и прикладные науки. Естествознание и псевдонаучные тенденции. Религия и наука. Естествознание и культура.
- •3)Понятие научной истины. Критерии и границы адекватности истины. Особенности процесса отображения в сознании наблюдателя.
- •4) Научные революции. Особенность современной научно-технической революции.
- •Первая научная революция XVII века
- •Вторая научная революция конца XVIII века — 1-я половина XIX века
- •5)Методы научного познания действительности. Соотношение рационального и иррационального мышления.
- •Виды научного метода Теоретический научный метод Теории
- •Гипотезы
- •Научные законы
- •Научное моделирование
- •Эмпирический научный метод Эксперименты
- •Научные исследования
- •Наблюдения
- •Измерения
- •6) Дифференциация и интеграция научного знания. Диалектика свойств системы и ее частей. Естествознание и философия.
- •7) Развитие понятий: материя, движение, пространство и время. Структурные уровни организации материи.
- •8) Соотношение закономерности и случайности в окружающем мире. Принцип причинности и лапласовский детерминизм.
- •9) Роль математики в естествознании. Моделирование явлений природы. Системные принципы.
- •10)Измерения – основа естественнонаучного познания. Система единиц измерения. Виды измерений и погрешностей. Обработка результатов измерений.
- •Традиционные системы мер Единицы измерения, сгруппированные по физическим величинам
- •11)Фундаментальные взаимодействия , их роль в природных процессах. Универсальные физические постоянные. Что такое Поле. Близкодействие и дальнодействие. Биополе.
- •12)Св-ва вещества. Концепция атомизма. Понятие системы . Структурные уровни организации материи в микро,макро и мегамире.
- •13)Этапы развития физики и осн.Достижения каждого этапа.
- •14)Понятие классической механики – масса, вес, сила, энергия и импульс. Законы Ньютона. Закон всемирного тяготенпя. Космические скорости.
- •15)Принцип относительности инвариантной симметрии. Законы сохранения механики.
- •16)Развитие представлений о свете. Проявление двойственной системы света
- •17)Общая и специальная теории относительности. Постулаты специальной теории относительности. Единое пространство-время.Эквивалентность массы и энергии.
- •18)Развитие представлений о природе тепловых явлений. Агрегатные состояния вещества. Понятие температуры макросистем.
- •19) Термодинамический и молекулярно-кинетический подходы в тепловых явлениях.
- •20)Циклические процессы
- •21)Первое начало термодинамики . Особые св-ва тепловой энергии. Коэффициент полезного действия тепловых машин (цикл Карно) Тепловые двигатели.
- •22)Второе начало термодинамики. Необратимость реальных процессов. Концепция энтропии и законы ее изменения.
- •23)Колебательные и волновые процессы. Взаимодействие волн. Резонанс.
- •24)Сущность электромагнитной индукции Максвелла. Понятие электрического заряда, тока проводимости и тока совмещения.
- •26) Концепции атомного уровня материи. Развитие моделей атома. Характерные размеры и массы атома и его составляющих.
- •27)Строение атомных ядер. Ускорители частиц. Св-ва ядерных сил. Дефект массы и энергия связей.
- •28)Общие сведения о характеристиках элементарных частиц. Тождественность и корпускулярно- волновой дуализм микрочастиц.
- •29)Вероятностный характер микропроцессов. Соотношение неопределенностей и принцип дополнительности в квантовой механике.
- •30)Представление о физическом вакууме в квантовой теории. Виртуальные частицы. Перспективы развития науки о микромире.
- •31)Радиоактивность и ее разновидности. Понятие критической массы. Принципы получения атомной и термоядерной энергии.
- •32)Влияние радиоактивных излучений на биосферу. Параметры излучений. Дозы. Способы защиты. Проблемы утилизации радиоактивных отходов.
- •33)Развитие взглядов на эволюцию Вселенной. Концепция большого взрыва. Реликтовое излучение и первичный нуклеосинтез.
- •34)Масштабы, структура и возраст Вселенной. Закон Хаббла. Эволюция звезд. Синтез химических элементов.
- •35)Происхождение и состав Солнечной системы. Строение и эволюция Земли.
- •36) Энергетика. Концепции использования традиционных и альтернативных источников энергии. Создание отечествен. Энергетики
- •37) Концепции устойчивого развития общества
- •38)Естествознание и современные технологии, обеспечение их безопасности.
- •39)Проблемы создания единой научной картины мира
29)Вероятностный характер микропроцессов. Соотношение неопределенностей и принцип дополнительности в квантовой механике.
Необходимость вероятностного подхода к описанию микрочастиц — важная отличительная особенность квантовой теории. Можно ли волны де Бройля истолковывать как волны вероятности, т. е. считать, что вероятность обнаружить микрочастицы в различных точках пространства меняется по волновому закону? Такое толкование волн де Бройля неверно уже хотя бы потому, что тогда вероятность обнаружить частицу в некоторых точках пространства может быть отрицательна, что не имеет смысла.
Чтобы устранить эти трудности, немецкий физик М. Борн (1882—1970) в 1926 г. предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, названная волновой функцией. Описание состояния микрообъекта с помощью волновой функции имеет статистический, вероятностный характер:
квадрат модуля волновой функции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения частицы в данный момент времени в определенном, ограниченном объеме.
dP
/Y/
= ¾ вероятность
обнаружения
dV частицы в данной точке
пространства.
ДОПОЛНИТЕЛЬНОСТИ ПРИНЦИП
методологич. принцип, выдвинутый дат. физиком Н. Бором в связи с интерпретацией квантовой механики. Он формулируется так: в процессе познания для воспроизведения целостности объекта необходимо применять взаимоисключающие, "дополнительные" классы понятий, каждый из к-рых применим в своих особых условиях. Д. п. часто отождествлялся с соотношением неопределенности Гейзенберга. Такое рассмотрение имело, напр., основание в том, что при определенности координаты микрочастицы имеет место неопределенность импульса, и наоборот. Тем самым открывалась возможность использовать эти две характеристики микрообъекта как взаимоисключающие. Однако содержание Д. п. значительно шире, и к этому принципу Бор подошел независимо от соотношения неопределенностей еще на ранних этапах развития квантовой физики. Для объяснения устойчивости атомов и особенностей их излучения Бор ввел свои известные постулаты. Благодаря им удалось непоследовательно соединить в одной модели классич. и квантовые представления о движении электрона. Но применение классич. представлений к области малых квантовых чисел (типично квантовым явлениям) не давало адекватных результатов. Необходимо было философски осмыслить данную ситуацию. Бор выдвигает идею новой формы связи классических и квантовых понятий. Новая идея, получившая в дальнейшем название "дополнительности", устанавливала эту связь, механически перенося старые понятия на новую область, в результате чего классические понятия "дополнялись" квантовыми. В последующем развитии квантовой теории возникли, казалось, непреодолимые гносеологические трудности (о физической природе микрочастиц, о возможности соединения в одной картине их взаимоисключающих сторон). Одной из попыток разрешения этих трудностей и явилась детальная разработка Бором Д. п. Свое название "Complementarity" эта идея получила в период формулировки основных принципов квантовой механики.