Скачиваний:
86
Добавлен:
30.09.2018
Размер:
3.23 Mб
Скачать

3.1. Последовательность определения наличия льдообразования с помощью номограммы

Необходимые исходные данные: температура и влажность воздуха в приземном слое и температура поверхности покрытия.

Порядок работы:

- по шкале Тв через точку, соответствующую температуре воздуха Тв проводится горизонтальная линия в квадранте до пересечения с линией, соответствующей влажности в точке 0;

- из точки 0 проводится вертикальная линия в квадранте до пересечения с горизонтальной линией в точке 0, проходящей через точку шкалы Тп, соответствующую температуре поверхности покрытия;

- через точку шкалы Твх соответствующую температуре воздуха, проводится вертикальная линия в квадрант до пересечения с горизонтальной линией в точке 0, проходящей через точку шкалы Тп, соответствующую температуре поверхности покрытия.

Точка 0 расположена вне площади АВСДЕ в квадранте , а в квадранте точка 0 принадлежит площади АВСДЕ. Это означает, что при условиях Тв = - 4 °С; Тп = - 5°С и = 90 %, в 90 % случаев наблюдается льдообразование при тех же температурах, но при = 95 % пересечение с линией Тп (точка О) окажется в площади АВСДЕ, что соответствует 100 % случаев льдообразования.

При параметрах системы Тв = - 2 °С; Тп = - 7 °С; = 90 % точки Р2 и РЗ находятся вне площадей АВСДЕ в квадранте , а в квадранте точка 03 принадлежит площади АВСДЕ, что означает отсутствие льдообразования, но находятся в пределах площади ВLДК, что говорит о необходимости постоянного контроля параметров системы, так как при повышении температуры покрытия до минус 6 °С (точки Р2 и РЗ) условия соответствуют 100 % случаев льдообразования.

3.2. Прогнозирование льдообразования

При прогнозировании льдообразования необходимо использовать прогнозируемые значения Тв, Тп и .

В настоящее время аэродромы ГА не оборудованы датчиками температуры воздуха и покрытия в приземном слое, поэтому для практического применения номограммы могут быть рекомендованы полученные закономерности между температурой воздуха, измеренной АМЦ, и температурой поверхности покрытия, полученной в процессе исследований в аэропорту Курумоч.

В качестве температуры воздуха в приземном слое может быть использована с погрешностью ± 0,5 °С температура воздуха, измеренная АМЦ штатными методами. Наибольшую сложность представляет определение температуры поверхности покрытия.

Температура поверхности покрытия определяется изменением термодинамических параметров системы, зависящих, в первую очередь, от кондуктивного, радиационного и конвективного теплообмена поверхности и окружающей среды.

Динамика изменения температуры покрытия зависит от динамики температуры воздуха, в результате испытаний получена зависимость отношения градиентов температур покрытия и воздуха от степени облачности, которая представлена графически на рис. 2.

Использование приведенной на рис. 2 зависимости возможно при определении точки отсчета температур воздуха и покрытия. За такую точку отсчета может быть принята температура воздуха, которая, как правило, в течение суток два раза совпадает с температурой поверхности покрытия.

Из анализа суточного хода температур воздуха и поверхности ИВПП установлена взаимосвязь, приведенная в табл. 1, между временем суток, когда температура воздуха практически равна температуре поверхности покрытия, и степенью облачности.

На температуру поверхности оказывает влияние скорость ветра. Так, при скорости 5 м/с, температура поверхности на 1 °С ниже температуры при отсутствии ветра.

Рис. 2. Зависимость отношения градиентов температур воздуха и покрытия от степени облачности

Таблица 1