- •Раздел 1. Общеобразовательные дисциплины
- •Раздел 2. Специальные дисциплины
- •Раздел 1. Общеобразовательные дисциплины
- •1.Основные понятия теории вероятностей. Случайные события, случайные величины. Функция распределения вероятностей, плотность распределения вероятностей.
- •2.Среднее значение (момента) случайных величин. Математическое ожидание, дисперсия.
- •3. Характеристическая функция случайных величин.
- •4. Нормальное (Гауссовское) распределение случайных величин. Плотность распределения и характеристическая функция момента.
- •5. Независимость случайных величин. Совместное распределение двух случайных величин. Условное распределение.
- •6. Семиуровневая модель osi/iso (гост р исо/мэк 7498-1-99).
- •Взаимодействие уровней модели osi
- •Уровень представления данных (Presentation layer)
- •Сеансовый уровень (Session layer)
- •Транспортный уровень (Transport Layer)
- •Сетевой уровень (Network Layer)
- •Канальный уровень (Data Link)
- •Физический уровень (Physical Layer)
- •7. Технико-экономические аспекты создания программного обеспечения вс. Оценка стоимости программной разработки.
- •8. Распределение затрат по фазам и видам работ программной разработки.
- •9. Компилятор в языках высокого уровня. Функции. Виды компиляторов.
- •Функции
- •Компиляторы
- •10. Ассемблер. Основные языковые конструкции. Необходимость двухпроходной трансляции. Основные работы, выполняемые транслятором. Таблицы транслятора.
- •11. Формальный язык. Грамматика. Сентенциальная форма. Нисходящий и восходящий анализ.
- •Грамматика
- •12. Понятие алгоритма и его свойства. Нормальные алгоритмы Маркова.
- •13. Иерархия запоминающих устройств. Кэш-память. Работа с кэш-памятью.
- •14. Прерывания. Классификация прерываний. Организация обработки прерываний.
- •15. Виды параллелизма. Векторная и конвейерная обработка. Классификация вычислительных комплексов по сочетанию потоков данных и потоков команд.
- •16. Информационная интегрированная среда предприятия. Общая база данных об изделиях (обди). Разделы обди.
- •17. Электронный документ. Технический электронный документ: форма представления, виды, жизненный цикл.
- •18. Электронная цифровая подпись. Суть и процесс использования электронной цифровой подписи.
- •19. Автоматизированные информационные системы. Цели и методы автоматизации.
- •20. Автоматизированные информационные системы. Математическое и программное обеспечение. Математическая модель. Программное изделие.
- •21. Свободное программное обеспечение: суть, области и проблемы использования.
- •22. Жизненный цикл программного обеспечения. Длительность. Состав. Стадии сопровождения.
- •Раздел 2. Специальные дисциплины
- •1. Модуль в языке System Verilog. Определение модуля, его применение. Задание портов и параметров.
- •2. Типы данных. Wire, reg, logic. Массивы. Строковый тип. Задание числе (в двоичном, десятичном, шестнадцатиричном виде).
- •3. Примитивы, типы примитивов. Объявление и применение примитивов.
- •4. Процедурные блоки (initial и always). Операторы управления временем.
- •Управление временем
- •5. Процедурные операторы. Операторы условного перехода. Операторы цикла. Операторы назначения. Оператор непрерывного назначения.
- •6. Маршрут проектирования программ плис. Средства разработки и проверки. Структура плис. Временные задержки сигналов
- •7. Математическое, программное и информационное обеспечение сапр. Математическая модель. Программное изделие.
- •8. Виды обеспечений, типы подсистем сапр. Общие требования к типовым сапр рэа.
- •9. Принципы измерения вектора движения ка
- •10. Геоцентрическая инерциальная система координат. Прямоугольные, сферические и геодезические координаты
- •11. Классификация орбит ка по параметрам движения. Параметры орбиты по Кеплеру.
- •12. Четыре основных свойства по.
- •13. Каскадная и спиральная модель жизненного цикла программного обеспечения
- •V модель (разработка через тестирование)
- •14. Биологический нейрон. Математическая модель нейрона. Связь искусственных нейронных сетей (инс) с другими дисциплинами. Проблемы, решаемые в контексте инс.
- •15. Архитектура нейронных сетей. Однослойный персептрон. Функции активации. Многослойный персептрон.
- •16. Понятие обучения. Методы обучения. Обучение персептрона. Процедура обратного распространения.
- •Метод к- ближайших соседей
- •Процедура обратного распространения
- •17. Гипотеза Хебба. Гипотеза ковариации. Конкурентное обучение.
- •18. Понятие vc-измерения (Вапника-Червоненкиса). Оценки обобщающей способности в задаче классификации. Теорема об универсальной аппроксимации.
- •19. Сети с локальным базисом. Сравнение сетей rbf с многослойным персептроном.
- •20. Сети Кохонена. Формализация задачи классификации для сети Кохонена. Алгоритм классификации для сети Кохонена.
- •21. Обучение Больцмана. Стохастические модели. Правило обучения Больцмана. Машина Больцмана.
- •22. Нейрокомпьютеры. Основные понятия. Классификация нейрокомпьютеров.
- •1. Что такое нейрокомпьютер?
- •2. Нейронные сети - основные понятия и определения
- •3. Модели нейронных сетей
- •3.1. Модель Маккалоха
- •3.2. Модель Розенблата
- •3.3. Модель Хопфилда
- •3.4. Модель сети с обратным распространением
- •4. Задачи, решаемые на основе нейронных сетей
- •5. Способы реализации нейронных сетей
- •6. Выводы
6. Выводы
Нейрокомпьютеры являются перспективным направлением развития современной высокопроизводительной вычислительной техники, а теория нейронных сетей и нейроматематика представляют собой приоритетные направления российской вычислительной науки. Основой активного развития нейрокомпьютеров является принципиальное отличие нейросетевых алгоритмов решения задач от однопроцессорных, малопроцессорных, а также транспьютерных. Для данного направления развития вычислительной техники не так важен уровень развития отечественной микроэлектроники, поэтому оно позволяет создать основу построения российской элементной базы суперкомпьютеров.
В России уже успешно функционирует один из первых мощных нейрокомпьютеров для финансового применения - CNAPS PC/128 на базе 4-х нейроБИС фирмы Alaptive Solutions. По данным фирмы "Торацентр" в число организаций, использующих нейронные сети для решения своих задач, уже вошли: Центробанк, МЧС, Налоговая Инспекция, более 30 банков и более 60 финансовых компаний.
В заключение необходимо отметить, что использование нейронных сетей во всех областях человеческой деятельности, в том числе в области финансовых приложений, движется по нарастающей, отчасти по необходимости и из-за широких возможностей для одних, из-за престижности для других и из-за интересных приложений для третьих. Не следует пугаться того, что появление столь мощных и эффективных средств перевернет финансовый рынок, или "отменит" традиционные математические и эконометрические методы технического анализа, или сделает ненужной работу высококлассных экспертов - говорить об этом, мягко говоря, преждевременно. В качестве нового эффективного средства для решения самых различных задач нейронные сети просто приходят - и используются теми людьми, которые их понимают, которые в них нуждаются и которым они помогают решать многие профессиональные проблемы. Не обязательно "насаждать" нейронные сети, или пытаться доказать их неэффективность путем выделения присущих им особенностей и недостатков - нужно просто относиться к ним как к неизбежному следствию развития вычислительной математики, информационных технологий и современной элементной базы.
Source: Нейрокомпьютеры (лекция)