Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на госы бакалавриат комета.doc
Скачиваний:
403
Добавлен:
22.09.2018
Размер:
6.32 Mб
Скачать

4. Нормальное (Гауссовское) распределение случайных величин. Плотность распределения и характеристическая функция момента.

Нормальное распределение, также называемое распределением Гаусса, — распределение вероятностей, которое играет важнейшую роль во многих областях знаний, особенно в физике. Физическая величина подчиняется нормальному распределению, когда она подвержена влиянию огромного числа случайных помех.Ясно, что такая ситуация крайне распространена, поэтому можно сказать, что из всех распределений, в природе чаще всего встречается именно нормальное распределение — отсюда и произошло одно из его названий.

Нормальное распределение зависит от двух параметров —смещения и масштаба, то есть, является, с математической точки зрения, не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения).

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием 0 и стандартным отклонением 1.

Плотность вероятности

Зелёная линия соответствует стандартному нормальному распределению

Функция распределения

Цвета на этом графике соответствуют графику наверху

Параметры

- коэффициент сдвига(вещественное число)

- коэффициент масштаба (вещественный)

Носитель

Плотность вероятности

Функция распределения

Математическое ожидание

Медиана

Дисперсия

Производящая функция моментов

Характеристическая функция

Source: Нормальное (Гауссовсое) распределение

Дополнение: Предельная центральная теорема, момент случайной величины, тоже самое с другими распределениями

5. Независимость случайных величин. Совместное распределение двух случайных величин. Условное распределение.

В одном и том же случайном эксперименте можно рассматривать не одну, а несколько - n - числовых функций, определенных на одном и том же пространстве элементарных событий. Совокупность таких функций называется многомерной случайной величиной или случайным вектором и обозначается .

Точнее. На вероятностном пространстве заданы случайные величины ; каждому w W эти величины ставят в соответствие n-мерный вектор , который называется n-мерным случайным вектором (n-мерной случайной величиной).

Функцией распределения случайного вектора или совместным распределением случайных величин называется функция, определенная равенством

, где .

По известной многомерной функции можно найти распределение каждой из компонент .

Например, если - двумерная случайная величина, имеющая совместное распределение, то распределения компонент и вычисляются соответственно по формулам:

, .

Условным законом распределения величины , входящей в систему , называется ее закон распределения, вычисленный при условии, что другая случайная величина приняла определенное значение .

Условный закон распределения можно задавать как функцией распределения, так и плотностью. Условная функция распределения обозначается условная плотность распределения .

При изучении систем случайных величин всегда следует обращать внимание на степень и характер их зависимости. Эта зависимость может быть более или менее ярко выраженной, более или менее тесной. В некоторых случаях зависимость между случайными величинами может быть настолько тесной, что, зная значение одной случайной величины, можно в точности указать значение другой. В другом крайнем случае зависимость между случайными величинами является настолько слабой и отдаленной, что их можно практически считать независимыми.

Понятие о независимых случайных величинах – одно их важных понятий теории вероятностей.

Случайная величина называется независимой от случайной величины , если закон распределения величины не зависит от того, какое значение приняла величина .

Для непрерывных случайных величин условие независимости от может быть записано в виде:

при любом .

Напротив, в случае, если зависит от , то .

[ Докажем, что зависимость или независимость случайных величин всегда взаимны: если величина не зависит от .

Действительно, пусть не зависит от :

. (1)

Из формул (8.4.4) и (8.4.5) имеем:

,

откуда, принимая во внимание (1), получим:

что и требовалось доказать. ]

Так как зависимость и независимость случайных величин всегда взаимны, можно дать новое определение независимых случайных величин.

Случайные величины и называются независимыми, если закон распределения каждой из них не зависит от того, какое значение приняла другая. В противном случае величины и называются зависимыми.

Для независимых непрерывных случайных величин теорема умножения законов распределения принимает вид:

, (2)

т. е. плотность распределения системы независимых случайных величин равна произведению плотностей распределения отдельных величин, входящих в систему.

Условие (2) может рассматриваться как необходимое и достаточное условие независимости случайных величин.

Часто по самому виду функции можно заключить, что случайные величины , являются независимыми, а именно, если плотность распределения распадается на произведение двух функций, из которых одна зависит только от , другая - только от , то случайные величины независимы.

[ Пример. Плотность распределения системы имеет вид:

.

Определить, зависимы или независимы случайные величины и .

Решение. Разлагая знаменатель на множители, имеем:

.

Из того, что функция распалась на произведение двух функций, из которых одна зависима только от , а другая - только от , заключаем, что величины и должны быть независимы. ]

Вышеизложенный критерий суждения о зависимости или независимости случайных величин исходит из предположения, что закон распределения системы нам известен. На практике чаще бывает наоборот: закон распределения системы не известен; известны только законы распределения отдельных величин, входящих в систему, и имеются основания считать, что величины и независимы. Тогда можно написать плотность распределения системы как произведение плотностей распределения отдельных величин, входящих в систему.

Sources: Совместные распределения величин, Условные распределения, Зависимые и независимые распределения величин