Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на госы бакалавриат комета.doc
Скачиваний:
404
Добавлен:
22.09.2018
Размер:
6.32 Mб
Скачать

Раздел 1. Общеобразовательные дисциплины

1.Основные понятия теории вероятностей. Случайные события, случайные величины. Функция распределения вероятностей, плотность распределения вероятностей.

Случайное событие — подмножество множества исходов случайного эксперимента; при многократном повторении случайного эксперимента частота наступления события служит оценкой его вероятности.

Случайное событие, которое никогда не реализуется в результате случайного эксперимента, называется невозможным и обозначается символом Ø. Случайное событие, которое всегда реализуется в результате случайного эксперимента, называется достоверным и обозначается символом Ω.

Числовая величина, принимающая то или иное значение в результате реализации испытания случайным образом, называется случайной величиной.

Понятие случайной величины играет весьма важную роль в теории вероятностей. Если «классическая» теория вероятностей изучала главным образом случайные события, то современная теория вероятностей преимущественно имеет дело со случайными величинами.

Если случайная величина может принимать конечное или счетное множество значений, то она называется дискретной (дискретно распределенной).

Непрерывной случайной величиной называется такая случайная величина, которая может принимать все значения из некоторого конечного или бесконечного промежутка.

Формальное определение:

Пусть — вероятностное пространство. Функция , измеримая относительно борелевской σ-алгебры на , называется случайной величиной. Вероятностное поведение случайной величины полностью описывается её распределением.

Source: случайное событие, Случайная величина 1, Случайная величина 2

Дополнение: случайный эксперимент

Функция распределения случайной величины - это числовая функция, которая имеет вид:

, .

Обозначение используется для того, чтобы подчеркнуть, о какой случайной величине идет речь; если это ясно из контекста, то часто индекс опускают и обозначают функцию распределения просто

Функция распределения определена на всей числовой оси и обладает следующими свойствами, вытекающими из свойств вероятностной меры:

1.

2. , .

3. Функция распределения является неубывающей: если , то

4. Функция распределения непрерывна слева:

для любого .

Примечание. Последнее свойство обозначает, какие значения принимает функция распределения в точках разрыва. Иногда определение функции распределения формулируют с использованием нестрогого неравенства: . В этом случае непрерывность слева заменяется на непрерывность справа: при . Никакие содержательные свойства функции распределения при этом не меняются, поэтому данный вопрос является лишь терминологическим.

Свойства 1-4 являются характеристическими, т.е. любая функция , удовлетворяющая этим свойствам, является функцией распределения некоторой случайной величины.

Функция распределения задает распределение вероятностей случайной величины однозначно. Фактически, она является универсальным и наиболее наглядным способом описания этого распределения.

Чем сильнее функция распределения растет на заданном интервале числовой оси, тем выше вероятность попадания случайной величины в этот интервал. Если вероятность попадания в интервал равна нулю, то функция распределения на нем постоянна.

В частности, вероятность того, что случайная величина примет заданное значение , равна скачку функции распределения в данной точке:

.

Если функция распределения непрерывна в точке , то вероятность принять данное значение для случайной величины равна нулю. В частности, если функция распределения непрерывна на всей числовой оси (при этом и соответствующее распределение называется непрерывным), то вероятность принять любое заданное значение равна нулю.

Из определения функции распределения вытекает, что вероятность попадания случайной величины в интервал, замкнутый слева и открытый справа, равна:

Непрерывное распределение

Дискретное распределение

Пусть имеется непрерывная случайная величина с функцией распределения , которую мы предположим непрерывной и дифференцируемой. Вычислим вероятность попадания этой случайной величины на участок от до:

,

т.е. приращение функции распределения на этом участке. Рассмотрим отношение этой вероятности к длине участка, т.е. среднюю вероятность, приходящуюся на единицу длины на этом участке, и будем приближать к нулю. В пределе получим производную от функции распределения:

. (1)

Введем обозначение:

. (2)

Функция - производная функции распределения – характеризует как бы плотность, с которой распределяются значения случайной величины в данной точке. Эта функция называется плотностью распределения (иначе – «плотность вероятности») непрерывной случайной величины .

Интеграл по плотности распределения вероятности по всей оси значений = 1.

Функции распределения Гаусса для разных МО и Дисп. (слева) и плотности распределения для них (справа)

Sources:Функция распределенияПлотность распределения