
- •Раздел 1. Общеобразовательные дисциплины
- •Раздел 2. Специальные дисциплины
- •Раздел 1. Общеобразовательные дисциплины
- •1.Основные понятия теории вероятностей. Случайные события, случайные величины. Функция распределения вероятностей, плотность распределения вероятностей.
- •2.Среднее значение (момента) случайных величин. Математическое ожидание, дисперсия.
- •3. Характеристическая функция случайных величин.
- •4. Нормальное (Гауссовское) распределение случайных величин. Плотность распределения и характеристическая функция момента.
- •5. Независимость случайных величин. Совместное распределение двух случайных величин. Условное распределение.
- •6. Семиуровневая модель osi/iso (гост р исо/мэк 7498-1-99).
- •Взаимодействие уровней модели osi
- •Уровень представления данных (Presentation layer)
- •Сеансовый уровень (Session layer)
- •Транспортный уровень (Transport Layer)
- •Сетевой уровень (Network Layer)
- •Канальный уровень (Data Link)
- •Физический уровень (Physical Layer)
- •7. Технико-экономические аспекты создания программного обеспечения вс. Оценка стоимости программной разработки.
- •8. Распределение затрат по фазам и видам работ программной разработки.
- •9. Компилятор в языках высокого уровня. Функции. Виды компиляторов.
- •Функции
- •Компиляторы
- •10. Ассемблер. Основные языковые конструкции. Необходимость двухпроходной трансляции. Основные работы, выполняемые транслятором. Таблицы транслятора.
- •11. Формальный язык. Грамматика. Сентенциальная форма. Нисходящий и восходящий анализ.
- •Грамматика
- •12. Понятие алгоритма и его свойства. Нормальные алгоритмы Маркова.
- •13. Иерархия запоминающих устройств. Кэш-память. Работа с кэш-памятью.
- •14. Прерывания. Классификация прерываний. Организация обработки прерываний.
- •15. Виды параллелизма. Векторная и конвейерная обработка. Классификация вычислительных комплексов по сочетанию потоков данных и потоков команд.
- •16. Информационная интегрированная среда предприятия. Общая база данных об изделиях (обди). Разделы обди.
- •17. Электронный документ. Технический электронный документ: форма представления, виды, жизненный цикл.
- •18. Электронная цифровая подпись. Суть и процесс использования электронной цифровой подписи.
- •19. Автоматизированные информационные системы. Цели и методы автоматизации.
- •20. Автоматизированные информационные системы. Математическое и программное обеспечение. Математическая модель. Программное изделие.
- •21. Свободное программное обеспечение: суть, области и проблемы использования.
- •22. Жизненный цикл программного обеспечения. Длительность. Состав. Стадии сопровождения.
- •Раздел 2. Специальные дисциплины
- •1. Модуль в языке System Verilog. Определение модуля, его применение. Задание портов и параметров.
- •2. Типы данных. Wire, reg, logic. Массивы. Строковый тип. Задание числе (в двоичном, десятичном, шестнадцатиричном виде).
- •3. Примитивы, типы примитивов. Объявление и применение примитивов.
- •4. Процедурные блоки (initial и always). Операторы управления временем.
- •Управление временем
- •5. Процедурные операторы. Операторы условного перехода. Операторы цикла. Операторы назначения. Оператор непрерывного назначения.
- •6. Маршрут проектирования программ плис. Средства разработки и проверки. Структура плис. Временные задержки сигналов
- •7. Математическое, программное и информационное обеспечение сапр. Математическая модель. Программное изделие.
- •8. Виды обеспечений, типы подсистем сапр. Общие требования к типовым сапр рэа.
- •9. Принципы измерения вектора движения ка
- •10. Геоцентрическая инерциальная система координат. Прямоугольные, сферические и геодезические координаты
- •11. Классификация орбит ка по параметрам движения. Параметры орбиты по Кеплеру.
- •12. Четыре основных свойства по.
- •13. Каскадная и спиральная модель жизненного цикла программного обеспечения
- •V модель (разработка через тестирование)
- •14. Биологический нейрон. Математическая модель нейрона. Связь искусственных нейронных сетей (инс) с другими дисциплинами. Проблемы, решаемые в контексте инс.
- •15. Архитектура нейронных сетей. Однослойный персептрон. Функции активации. Многослойный персептрон.
- •16. Понятие обучения. Методы обучения. Обучение персептрона. Процедура обратного распространения.
- •Метод к- ближайших соседей
- •Процедура обратного распространения
- •17. Гипотеза Хебба. Гипотеза ковариации. Конкурентное обучение.
- •18. Понятие vc-измерения (Вапника-Червоненкиса). Оценки обобщающей способности в задаче классификации. Теорема об универсальной аппроксимации.
- •19. Сети с локальным базисом. Сравнение сетей rbf с многослойным персептроном.
- •20. Сети Кохонена. Формализация задачи классификации для сети Кохонена. Алгоритм классификации для сети Кохонена.
- •21. Обучение Больцмана. Стохастические модели. Правило обучения Больцмана. Машина Больцмана.
- •22. Нейрокомпьютеры. Основные понятия. Классификация нейрокомпьютеров.
- •1. Что такое нейрокомпьютер?
- •2. Нейронные сети - основные понятия и определения
- •3. Модели нейронных сетей
- •3.1. Модель Маккалоха
- •3.2. Модель Розенблата
- •3.3. Модель Хопфилда
- •3.4. Модель сети с обратным распространением
- •4. Задачи, решаемые на основе нейронных сетей
- •5. Способы реализации нейронных сетей
- •6. Выводы
2.Среднее значение (момента) случайных величин. Математическое ожидание, дисперсия.
Под моментом случайной величины подразумевается произведение значения этой величины на вероятность ее обнаружения.
Математическое
ожидание — понятие среднего значения
случайной величины в теории вероятностей.
Обозначается
или иногда
(в русской литературе). В статистике
часто используют обозначение
.
Рассмотрим случайную величину с числовыми значениями. Часто оказывается полезным связать с этой функцией число – ее «среднее значение» или, как говорят, «среднюю величину», «показатель центральной тенденции». По ряду причин, некоторые из которых будут ясны из дальнейшего, в качестве «среднего значения» обычно используют математическое ожидание.
Определение. Математическим ожиданием случайной величины Х называется число
(Формула
для дискретных значений)
(Формула
для непрерывных значений)
т.е. математическое ожидание случайной величины – это взвешенная сумма значений случайной величины с весами, равными вероятностям соответствующих элементарных событий.
[ Пример. Вычислим математическое ожидание числа, выпавшего на верхней грани игрального кубика. Непосредственно из определения МО следует, что
]
Дисперсия
случайной величины
— мера разброса данной случайной
величины, т. е. её отклонения от
математического ожидания. Обозначается
в русской литературе и
в зарубежной. В статистике часто
употребляется обозначение
или
.
Квадратный корень из дисперсии
называется среднеквадратичным
отклонением, стандартным отклонением
или стандартным разбросом.
Пусть
— случайная величина, определённая на
некотором вероятностном пространстве.
Тогда
где символ
обозначает математическое ожидание.
Свойства
В силу линейности математического ожидания справедлива формула:
Дисперсия любой случайной величины неотрицательна:
Если дисперсия случайной величины конечна, то конечно и её математическое ожидание;
Если случайная величина равна константе, то её дисперсия равна нулю:
Верно и обратное: если
, то
,
если
независимы;
[Пример
Пусть
случайная величина
имеет стандартное непрерывное равномерное
распределение на
т. е. её плотность вероятности задана
равенством
Тогда
и
Тогда
]
Sources:Мат. ожидание 1, Мат. ожидание 2, Дисперсия
Дополнение: Момент случайной величины
3. Характеристическая функция случайных величин.
Характеристическая функция случайной величины — один из способов задания распределения. Характеристические функции могут быть удобнее в тех случаях, когда, например, плотность или функция распределения имеют очень сложный вид. Также характеристические функции являются удобным инструментом для изучения вопросов слабой сходимости (сходимости по распределению).
Пусть
есть случайная величина
с распределением
.
Тогда характеристическая функция
задаётся формулой:
.
Пользуясь формулами для вычисления математического ожидания, определение характеристической функции можно переписать в виде:
,
то есть характеристическая функция — это преобразование Фурье распределения случайной величины.
(Ф1). Характеристическая функция всегда существует:
Полезно
вспомнить, что даже
(Мат. ожидание) существует не всегда.
[
Доказательство.
Воспользуемся свойством
(Дисперсия не может быть отрицательной),
равносильным неравенству
:
(Ф2). По характеристической функции однозначно восстанавливается распределение (функция распределения, плотность или таблица распределения). Другими словами, если две случайные величины имеют одинаковые характеристические функции, то и распределения этих величин совпадают. ]
Формулы, с помощью которых по характеристической функции восстанавливается распределение, в анализе называют формулами "обратного преобразования Фурье". Например, если модуль характеристической функции интегрируем на всей прямой, то у случайной величины есть плотность распределения и она находится по формуле
Ни одна из формул обратного преобразования Фурье нам не понадобится.
(Ф3).
Характеристическая функция случайной
величины
связана с характеристической функцией
случайной величины
равенством
[ Пример.
Пусть
имеет распределение Бернулли.
Случайная
величина
имеет распределение Бернулли, если она
принимает всего два значения:
и
с вероятностями
и
соответственно. Таким образом:
,
.
Тогда:
.
]
Sources: Хар. функции 1, Хар. функции 2
Дополение: Хар.функции через привычные обозначения матожидания