Bilet_11
.odtЗамеча́тельные преде́лы — термин, использующийся в советских и российских учебниках по математическому анализу для обозначения некоторых широко известных математических тождеств со взятием предела. Особенно известны:
-
Первый замечательный предел:
-
Второй замечательный предел:
Первый замечательный предел
Доказательство
Рассмотрим односторонние пределы и и докажем, что они равны 1.
Пусть . Отложим этот угол на единичной окружности (R = 1).
Точка K — точка пересечения луча с окружностью, а точка L — с касательной к единичной окружности в точке (1;0). Точка H — проекция точки K на ось OX.
Очевидно, что:
- (1)
(где SsectOKA — площадь сектора OKA)
(из : | LA | = tgx)
Подставляя в (1), получим:
Так как при :
Умножаем на sinx:
Перейдём к пределу:
Найдём левый односторонний предел:
Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1.
Следствия
Доказательство следствий [показать]
[править]Второй замечательный предел
или
Доказательство второго замечательного предела:
Доказательство для натуральных значений x [показать]
Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что . Рассмотрим два случая:
1. Пусть . Каждое значение x заключено между двумя положительными целыми числами: , где — это целая часть x.
- Отсюда следует: , поэтому
- .
- Если , то . Поэтому, согласно пределу , имеем:
- .
- По признаку (о пределе промежуточной функции) существования пределов .
2. Пусть . Сделаем подстановку − x = t, тогда
- .
Из двух этих случаев вытекает, что для вещественного x.
Следствия
-
-
-
-
-
для ,
-