Bilet_10
.odtТеоремы о пределах
-
Бесконечно большие и бесконечно малые.
Функция f(x) стремится к бесконечности при x стремящимся к a, если для любого M > 0 можно указать такое значение d > 0, что для всех x удовлетворяющих неравенству |x-a| < dимеет место неравенство |f(x)| > M.
limx® a=Ґ
-
Функция ограниченная при x® a.
-
Функция ограниченная при x® Ґ.
-
Теорема. Если limx® a f(x)=b, то функция f(x) ограниченная при x® a.
-
Бесконечно малые и их свойства. limx® a a(x)=0
Теорема. 1. Если f(x)=b+a, где a - б.м. при x® a, то limx® a f(x)=b и обратно, если limx® af(x)=b, то можно записать f(x)=b+a(x).
Теорема. 2. Если limx® a a(x)=0 и a(x) № 0, то 1/a® Ґ.
Теорема. 3. Сумма конечного числа б.м. есть б.м.
Теорема. 4. Произведение б.м. на ограниченную функцию есть б.м.
-
Теоремы о пределах.
Теорема. 1. Предел суммы есть сумма пределов.
Теорема. 2. Предел произведения есть произведение пределов.
Теорема. 3. Предел частного есть частное пределов (если знаменатель не обращается в 0).
Теорема. 4. Если u(x) <= z(x) <= v(x), и limx® a u(x)=limx® a v(x)=b, то limx® a z(x)=b. ("Теорема о двух милиционерах").
-
Первый замечательный предел.
0.5sin(x) < 0.5x < 0.5tg(x)
lim x® 0
sin(x)
x
=1.
-
Второй замечательный предел.
Переменная величина
( (
1+
1
n
) )
n
при n® Ґ имеет предел, заключенный между 2 и 3.
Бесконечно малые функции.
Определение. Функция f(x) называется бесконечно малой при х®а, где а может быть числом или одной из величин ¥, +¥ или -¥, если .
Бесконечно малой функция может быть только если указать к какому числу стремится аргумент х. При различных значениях а функция может быть бесконечно малой или нет.
Пример. Функция f(x) = xn является бесконечно малой при х®0 и не является бесконечно малой при х®1, т.к. .
Теорема. Для того, чтобы функция f(x) при х®а имела предел, равный А, необходимо и достаточно, чтобы вблизи точки х = а выполнялось условие
f(x) = A + a(x),
где a(х) – бесконечно малая при х ® а (a(х)®0 при х ® а).
Свойства бесконечно малых функций:
1) Сумма фиксированного числа бесконечно малых функций при х®а тоже бесконечно малая функция при х®а.
2) Произведение фиксированного числа бесконечно малых функций при х®а тоже бесконечно малая функция при х®а.
3) Произведение бесконечно малой функции на функцию, ограниченную вблизи точки х = а является бесконечно малой функцией при х®а.
4) Частное от деления бесконечно малой функции на функцию, предел которой не равен нулю есть величина бесконечно малая.
Используя понятие бесконечно малых функций, приведем доказательство некоторых теорем о пределах, приведенных выше.
Доказательство теоремы 2. Представим f(x) = A + a(x), g(x) = B + b(x), где
, тогда
f(x) ± g(x) = (A + B) + a(x) + b(x)
A + B = const, a(х) + b(х) – бесконечно малая, значит
Теорема доказана.
Доказательство теоремы 3. Представим f(x) = A + a(x), g(x) = B + b(x), где
, тогда
A×B = const, a(х) и b(х) – бесконечно малые, значит
Теорема доказана.