Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен / Шпоры.doc
Скачиваний:
275
Добавлен:
19.06.2017
Размер:
1.16 Mб
Скачать

Билет 10

3.2. Повреждение как начальное звено патогенеза. Уровни повреждения и их проявление

Пусковым механизмом (звеном) любого патологического процесса, заболевания является повреждение, возникающее под влиянием вредоносного фактора.

Повреждения могут быть:

  • первичными; они обусловлены непосредственным действием патогенного фактора на организм – это повреждения на молекулярном уровне,

  • вторичными; они являются следствием влияния первичных повреждений на ткани и органы, сопровождаются выделением биологически активных веществ (БАВ), протеолизом, ацидозом, гипоксией, нарушением микроциркуляции, микротромбозом и т.д.

Повреждения на молекулярном уровне носят локальный ха­рактер и проявляются разрывом молекул, внутримолекулярными перестройками, что приводит к появлению отдельных ионов, ра­дикалов, образованию новых молекул и новых веществ, оказы­вающих патогенное действие на организм. Межмолекулярные перестройки способствуют появлению веществ с новыми анти­генными свойствами. Но одновременно с повреждением включа­ются и защитно-компенсаторные процессы на молекулярном уровне.

Например, при наследственных заболеваниях первичное повреждение локализуется в генетическом аппарате на мо­лекулярном уровне. Повреждения на клеточном уровне характеризуются струк­турными и метаболическими нарушениями, сопровождаются синтезом и секрецией биологически активных веществ: гистамина, серотонина, гепарина, брадикинина и др.

Повреждения на тканевом уровне характеризуются на­рушением основных функциональных свойств, развитием пато­логического парабиоза, перерождением тканей. Нарушение основных функциональных свойств сопровождается снижением функциональной подвижности, уменьшением функциональной лабильности.

Патологический парабиоз в отличие от физиологического не приводит к восстановлению исходного состояния ткани. Он протекает по тем же стадиям, что и физиологический, но при нем резко снижен уровень функциональной подвижности, отмечается ограничение функций, перерождение тканей (например, жировая дистрофия сердечной мышцы, печени, коллагенозы и др.).

Повреждения на органном уровне характеризуются сниже­нием, извращением или потерей специфических функций органа, уменьшением доли участия поврежденного органа в общих реакциях организма. Например, при инфаркте миокарда, клапанных пороках сердца нарушается функция сердца и доля его участия в адекватном гемодинамическом обеспечении функционирующих органов и систем. При первичном повреждении на системном или организменном уровне возникает генерализованное выпадение или ограничение той или иной функции, что особенно отчетливо наблюдается при заболеваниях ЦНС, эндокринных поражениях. При этом происходит сложная перестройка регуляторных процессов, обмена веществ, что в ряде случаев позволяет организму сохранить жизнь. К числу общих компенсаторных реакций, процессов при повреждении на системном или организменном уровне относятся воспаление, лихорадка и т.д. Компенсаторно-приспособительные реакции направлены на защиту и восстановление нарушенных функций.

2. Выход жидкой части крови в интерстиций очага В. – собственно экссудация происходит вследствие резкого повышения проницаемости гистогематического барьера и как следствие усиления процесса фильтрации и микровезикулярного транспорта. Выход жидкости и растворенных в ней веществ осуществляется в местах соприкосновения эндотелиальных клеток. Щели между ними могут увеличиваться при расширении сосудов, при сокращении контрактильных структур и округлении эндотелиальных клеток. Кроме того, клетки эндотелия способны “заглатывать” мельчайшие капельки жидкости (микропиноцитоз), переправлять их на противоположную сторону и выбрасывать в близлежащую среду (экструзия).

Транспорт жидкости в ткани зависит от физико-химических изменений, происходящих по обе стороны сосудистой стенки. В связи с выходом белка из сосудистого русла, его количество вне сосудов увеличивается, что способствует повышению онкотического давления в тканях. При этом в очаге В. происходит под влиянием лизосомальных гидролаз расширение белковых и других крупных молекул на более мелкие. Гиперонкия и гиперосмия в очаге альтерации создают приток жидкости в воспаленную ткань. Этому способствует и повышение внутрисосудистого гидростатического давления в связи с изменениями кровообращения в очаге В.

Результатом экссудации является заполнение интерстициальных пространств и очага В. экссудатом. Экссудат отличается от трансудата тем, что содержит большее количество белков (не менее 30 г/л), протеолитических ферментов, иммуноглобулинов. Если проницаемость стенки сосудов нарушена незначительно, то в экссудат, как правило, проникают альбумины и глобулины. При сильном нарушении проницаемости из плазмы в ткань поступает белок с большей молекулярной массой (фибриноген). При первичной, а затем и вторичной альтерации проницаемость сосудистой стенки увеличивается на столько, что через нее начинают проникать не только белки, но и клетки. При венозной гиперемии этому способствует расположение лейкоцитов вдоль внутренней оболочки мелких сосудов и более или менее прочное их прикрепление к эндотелию (феномен краевого стояния лейкоцитов).

Раннюю транзиторную реакцию роста проницаемости сосудов обуславливает действие гистамина, ПГЕ, лейкотриена Е4, серотонина, брадикинина. Ранняя транзиторная реакция в основном затрагивает венулы с диаметром не более, чем 100 мкм. Проницаемость капилляров при этом не меняется. Действие экзогенных этиологических факторов механической (травма, ранение), термической или химической природы, вызывая первичную альтерацию, приводит к длительной реакции роста проницаемости. В результате действия этиологического фактора происходит некроз эндотелиалльных клеток на уровне артериол небольшого диаметра, капилляров и венул, что ведет к стойкому возрастанию их проницаемости. Отсроченная и стойкая реакция роста проницаемости микрососудов развивается в очаге В. через часы или сутки от его начала. Она характерна для В., вызванного ожогами, излучением и аллергическими реакциями отсроченного (замедленного) типа. Одним из ведущих медиаторов этой реакции является медленно реагирующая субстанция анафилаксии (МРСА), которая есть не что иное как лейкотриены и полиненасыщенные жидкие кислоты, которые образуются их арахидоновой кислоты и фактора активации тромбоцитов (ФАТ). МРСА в очаге В. образуют и высвобождают лаброциты. Стойкий рост проницаемости микрососудов в очаге В. МРСА обуславливает, вызывая протеолиз базальных мембран микрососудов.

Биологический смысл экссудации как компонента В. состоит в отграничении очага В. через сдавление кровеностных и лимфатических микрососудов вследствие интерстиналльного отека, а также в разведении флогогенов и факторов цитолиза в очаге В. для предотвращения избыточной вторичной альтерации.

Виды экссудатов: серозный, гнойный, геморрагический, фиброзный, смешанный экссудат

Билет 11

Разновидности приспособительных реакций

1. Адаптации

2. Компенсации: определение из № 11

Компенсация может реализовываться за счет имеющихся в организме,не всегда задействованных органов и тканей (в основном в экстрем.ситуациях)

Компенсаторные реакции:

1. Возникают в ответ на сигнализацию дефекта функций и структур,обменных процессов.2.Направлены на восстановление гармоничных координированных соотношений в деятельности органов и систем в интересах целостного организма3. Направлены на восстановление гомеостаза.4. Направлены на усиление приспособляемости организма к меняющимся условиям среды.5. Существуют только при наличии патологических реакций.Компенсаторные реакции - частный случай приспособительных реакций

Структуры и механизмы компенсаций:

1. Парные органы (почки, легкие). Гипертрофия второго органа при недостаточности первого - викарирование органа.

2.Неповрежденные доли органа.

3. Наличие дублирующих систем - выделение почками, потовыми железами, легкими.

4. Включение резервных структур: много сосудов в спавшемся состоянии при покое органа. Не все клетки органа работают, не все ядрышки в ядре клетки работают.

5. Координирующая функция ЦНС.

а) пластичность коры головного мозга (клетки специализированные по коре).

б) многозвеньевая связь коры с периферией (нейроны взаимодействуют).

в) войлочная структура проводящих систем.

г) наличие перекреста нервных путей.

д) способность нервных клеток при перевозбуждении переходить в тормозное состояние.

Структурная основа реакций компенсации- регенерация (на уровне структурно-функциональных основ).

Регенерация - восстановление структур.

Уровни регенерации организма человека:

ВНУТРИКЛЕТОЧНАЯ:Молекулярная регенерация - отстройка молекул белка(репарация).Внутриорганоидная - восстановление внутриорганоидных образований.Органоидная - увеличение числа органоидов в клетке.

КЛЕТОЧНАЯ:гипертрофия - увеличение размеров клетокгиперплазия - увеличение числа клеток.3 группы органов1. Регенерация за счет митотического деления (гиперплазия): эпителий кишечника.2. Регенерация за счет гипертрофии - миокард.3. Регенерация за счет гипертрофии и -плазии - легкие (увеличение размеров клеток и их числа).Реакции адаптации и компенсации:

Срочные:Включаются быстроДействуют недолго (мин, ч, день)Развиваются за счет предсуществующих (имеющихся) механизмов (гипоксия).Долговременные:

Развиваются спустя более или менее продолжительное время

Длится долго (иногда всю жизнь)

Не имеют предсуществующих готовых механизмов (усиление эритропоэза при кровопотере).

По состоянию патологических и компенсаторных реакций - стадии болезни

I стадия - явное преобладание патологических реакций (полома,повреждения) над компенсаторными на фоне неиспользованных функциональных резервов организма.

II стадия - выраженность реакций компенсации, их преобладание над патологическими на фоне усиления расходования функциональных резервов.

III стадия:

а) выздоровление – компенсаторные реакции затухают,восстановление резервных возможностей организма.

б) гибель - преобладание патологических реакций над компенсаторными на фоне истощения функциональных резервов организма.

2.

Углеводный обмен. Начиная с самых ранних стадий воспалительного процесса, в его очаге резко возрастает потребность тканей в кислороде. Несмотря на возникающую артериальную гиперемию, а в дальнейшем - из-за венозной гиперемии, тканям начинает не хватать кислорода. В то же время в воспаленных тканях очень интенсивно используется приносимая в больших количествах с током крови глюкоза.

Характерным для изменений углеводного обмена в очаге воспаления является отсутствие эффекта Пастера, заключающегося в том, что в присутствии кислорода тормозится анаэробное расщепление углеводов. Жировой обмен. В крови, оттекающей от очага воспаления, повышается содержание свободных жирных кислот, так как в воспаленной ткани усиливаются процессы липолиза. Одновременно в этом регионе нарастает количество кетоновых тел, что свидетельствует не только об усилении, но и об извращении жирового обмена.

Белковый обмен. В воспаленных тканях происходит значительное усиление протеолитических процессов, в связи с чем здесь накапливается большое количество аминокислот и полипептидов. Физико-химические изменения в очаге воспаления. Как было сказано выше, вследствие усиления гликолиза в тканях очага воспаления накапливается молочная кислота; нарушения липидного обмена ведут к увеличению концентрации свободных жирных кислот и кислых по своей реакции кетоновых тел. Это приводит к тому, что в очаге воспаления накапливается большое количество свободных ионов водорода, то есть развивается состояние ацидоза. Биологически активные вещества в очаге воспаления. В очаге воспаления накапливается большое количество биологически активных веществ, которые меняют течение обменных процессов, вызывают дальнейшую альтерацию тканей и стимулируют процессы пролиферации. К таким веществам в первую очередь относятся лизосомные ферменты, которые, как уже говорилось, «запускают» процессы альтерации, повышают сосудисто-тканевую проницаемость, влияют на клеточный метаболизм и стимулируют пролиферацию.Второй важной группой биологически активных веществ, концентрация которых в очаге воспаления повышена, являются простагландины. Наконец, в очаге воспаления обнаружена группа активных полипептидов, которые вызывают повышение температуры тканей, ведут к их некрозу, стимулируют движение лейкоцитов, оказывают влияние на пролиферативные процессы.

Гипертоническая болезнь (ГБ)- эссенциальная, первичная - основными проявлениями которой являются:

1. повышенное АД с частыми церебральными расстройствами сосудистого тонуса;

2. стадийность в развитии симптомов;

3. выраженная зависимость от функционального состояния нервных механизмов регуляции АД;

4. отсутствие видимой причинной связи болезни с первичным органическим поражением каких-либо органов или систем. Это и отличает ГБ от вторичных (симптоматических артериальных гипертензий), Основной причиной ГБ является острое или длительное эмоциональное перенапряжение, ведущее к развитию невроза и нарушению нервных механизмов регуляции АД на фоне слабости основных корковых процессов.

И есть еще одна теория - роль наследственного дефекта клеточных мембран, изменяющего проницаемость мембран для электролитов и как следствие этого:

1. повышается концентрация Na+ в клетке и снижается концентрация K+ и

2. увеличивается концентрация свободного Ca2+, что повышает сократимость клетки и высвобождает агенты симпатоадреналового действия.

Согласно этой теории - это и есть причина ГБ, а эмоциональный стресс - как условие для выявления патологии.

Уже в начальном периоде ГБ в патогенез включаются изменения со стороны гуморальных прессорных и депрессорных систем. Их активация носит компенсаторный характер и возникает как реакция на перенапряжение и нарушение трофики нервных клеток головного мозга. Быстро формируется гиперкинетический тип кровообращения - повышение сердечного выброса и мало меняется общее периферическое сопротивление сосудов. Но очень часто рано повышается сосудистое сопротивление в почках - развивается ишемизация и усиливается активность ренин-ангиотензиновой системы.

В этот период, пока растяжимость и эластичность аорты еще сохранены, происходит перенастройка барорецепторов синокаротидной зоны и дуги аорты, что выражается в сохранении нормальной активности аортального нерва при повышенном АД (а в норме - депрессорный эффект). Возможно, эта "перенастройка" барорецепторов обеспечивает задачи регуляции кровоснабжения, сдвигая его параметры на оптимальный для новых условий уровень. Но затем утолщение стенок аорты и сонных артерий и уменьшение их эластичности на более поздних стадиях ГБ приводит к снижению чувствительности барорецепторов и уменьшению депрессорных реакций.

Влияние ЦНС на тонус артерий и особенно артериол, а также на функцию миокарда опосредуется через симпато-адреналовую систему, включая сосудодвигательные центры подбугорья, симпатический нерв, надпочечники, α- и β-адренергические рецепторы сердца и сосудов, что в итоге ведет к гиперкинезии сердца и констрикции сосудов. В начальных стадиях из-за повышения сердечного выброса почечный кровоток может бытьусилен и это ведет к повышению мочеотделения и экскреции Na+. Потеря натрия стимулирует секрецию альдостерона, задерживающего натрий в тканях и стенках артериол, что повышает их чувствительность к прессорным воздействиям. Т.о., формируются порочные круги:

1) усиление секреции катехоламинов + почечный фактор > ренин-ангиотензиновый механизм > СДЦ > повышение уровня катехоламинов;

2) ренин-ангиотензиновый и альдостероновый механизмы потенцируют друг друга;

3) ослабление депрессорного механизма способствует растормаживанию СДЦ > повышение АД и снижение возбудимости депрессорных барорецепторов.

Стабильность и выраженность артериальной гипертензии при гипертонической болезни определяется не только активностью прессорных систем организма, но и состоянием ряда депрессорных систем, в том числе кининовой системы почек и крови, активностью ангиотензиназы и почечных простагландинов.

Повышение активности депрессорных механизмов на ранних стадиях гипертонической болезни следует рассматривать как реакцию на артериальную гипертензию. В физиологических условиях депрессорные системы нейтрализуют действие факторов, вызывающих повышение АД, поскольку между прессорными и депрессорными системами есть четкое взаимодействие.

Период стабилизации гипертонической болезни характеризуется новыми гемодинамическими сдвигами: постепенным уменьшением сердечного выброса и нарастанием общего периферического сосудистого сопротивления. Большую роль в этот период играет снижение компенсаторных резервов депрессорных нервных и гуморальных механизмов (гуморальные депрессорные системы, чувствительность барорецепторов дуги аорты и синокаротидной зоны). Постоянное напряжение гипоталамических структур, ответственных за регуляцию АД, приводит к тому, что первоначально нестойкое и кратковременное повышение тонуса артериол (и в особенности артериол почек) становится постоянным.Поэтому в патогенезе гипертонической болезни в период стабилизации все большую роль играют гуморальные факторы. Функциональное (вазоконстрикция), а затем и органическое (артериаологиалиноз) сужение почечных артериол вызывает гиперфункцию и гипертрофию юкстагломеруллярного аппарата и повышение секреции ренина.

В патогенез нередко включаются новые звенья - в частности повышение прессорной активности гипоталамических структур под влиянием ишемии, связанной с вазоконстрикцией и ангиопатией сосудов головного мозга. У значительной части больных развивается атеросклероз аорты, ведущий к потере ее эластичности, что способствует дальнейшему повышению систолического давления и разрушению барорецепторных зон. Атеросклероз артерий головного мозга и почечных артерий создает предпосылки к стабилизации повышенного АД в связи с постоянной ишемией мозга и почек.

Рано возникает перегрузка сердца и развивается сердечная недостаточность.

Билет 12

Смерть - распад целостного организма, нарушение взаимодействия его частей между собой, нарушение его взаимодействия с окружающей средой и освобождение частей организма от координирующего влияния ЦНС.

Смерть:

а) естественная - в результате изнашивания всех органов организма. Продолжительность жизни человека должна быть 180-200 лет.

б) патологическая - в результате заболеваний.

Остановка дыхания и сердцебиения - еще не есть истинная смерть.

Смерть истинная (биологическая) не наступает внезапно, ей предшествует период умирания (процесс).

Период умирания - терминальный период - особый необратимый (без помощи) процесс, при котором компенсация возникших нарушений, самостоятельное восстановление нарушенных функций невозможно (происходит распад целостности организма)

Стадии терминального периода (состояния)

I. Преагональный период:- Резкое нарушение кровообращения- Падение АД

- Одышка- Спутанность или потеря сознания- Нарастающая гипоксия тканей

Энергия еще в основном за счет ОВ процессов.

От нескольких часов до нескольких суток. Предвестник агонии- терминальная пауза - остановка дыхания на 30-60 сек.

II. Агония - глубокое нарушение всех жизненных функций организма.

- энергия образуется за счет гликолиза (невыгодно, нужно в 16 раз больше субстрата). Резко нарушается функция ЦНС.

Признаки:- потеря сознания (дыхание сохраняется)- исчезают глазные рефлексы- нерегулярное судорожное дыхание- резко нарастает ацидоз

Т.е постепенно выключаются все функции организма и в то же время крайне напрягаются защитные приспособления,утрачивающие уже свою целесообразнось(судороги,термин.дыхание)

Изменение МЦР - агрегаты, сладжи. Длится от нескольких мин до нескольких часов.

III. Клиническая смерть. 4-6 мин (состояние,когда все видимые признаки жизни уже исчезли,но обмен веществ,хотя и на миним.уровне,все еще продолжается)

Остановка дыхания- Прекращение работы сердца Еще нет необратимых изменений в коре головного мозга

- Еще идет гликолиз в тканях- Как только прекращаются гликолитические процессы - биологическая смерть.

Чем больше период умирания, тем короче клиническая смерть (при кратковременном действии тока клиническая смерть длится 6-8 мин). Самые ранние необратимые изменения возникают в мозге и особенно в КБП. На этом этапе жизнь может быть восстановлена.

В агональном состоянии:

- подкорка выходит из-под контроля коры - одышка, судороги; сохраняется активность древних образований мозга - продолговатый мозг.

- сначала выключаются: мышцы диафрагмы, затем межреберные мышцы, затем мышцы шеи, затем остановка сердца.

Одним из клеточных медиаторов воспаления является гистамин. Он содержится в гранулах тканевых базофилов (тучные клетки или лаброциты) в комплексе с гепарином и химазой в неактивной форме. В. свободном состоянии он оказывает расширяющее действие на мелкие сосуды (капилляры, венулы), увеличивая проницаемость их стенки. В малых дозах гистамин расширяет артериолы, в больших — суживает венулы.

Другим клеточным медиатором воспаления является серотонин. У человека он содержится в тромбоцитах,. При разрушении клеток серотонин поступает в среду, вызывая повышение проницаемости сосудов.

Тканевые базофилы вырабатывают также гепарин, роль которого при воспалении заключается в том, что он препятствует образованию фибрина на внутренней оболочке капилляров, способствуя также увеличению проницаемости их стенки.

Лимфокины — вещества белковой природы, образующиеся в лимфоцитах, инов. При воспалении наибольшее значение имеют три из них: фактор, угнетающий эмиграцию макрофагоцитов, фактор, активирующий макрофагоциты, фактор хемотаксиса.

В клетках крови (лейкоцитах, тромбоцитах и др.) образуется еще одна группа веществ, играющих важную роль в динамике воспаления. Это простагландины. Источником их образования являются фосфолипиды клеточных мембран. Нарушение строго упорядоченной структуры фосфолипидов в мембране делает их доступными действию фосфолипазы А2, в результате чего отщепляется арахидоновая кислота. С нее начинается каскад химических реакции, идущих в двух направлениях. Сели на арахидоновую кислоту действует фермент циклоксигеназа, то в итоге образуются простагландины (ПГЕ2, ПГФ2, ПГИ2) или простациклины (ПГИ2), если же свою активность проявляет прежде всего липоксигеназа, то получаются лейкотриены. Дальнейшее превращение простагландинов происходит под влиянием тромбоксансинтетазы, в результате чего образуется тромбоксан А. Последний вызывает сужение сосудов, агрегацию тромбоцитов, тромбоз, отек, боль.

Другой путь биосинтеза простагландинов заключается в том, что под влиянием простациклинсинтетазы образуется простациклин (ПГИ2). Этот процесс совершается в эндотелиоцитах, где и находится указанный фермент. Он оказывает действие, противоположное тромбоксану: расширяет сосуды и подавляет агрегацию тромбоцитов. Таким образом, арахидоновая кислота дает начало двум веществам с противоположным действием, причем выбор одного из путей биосинтеза, по-видимому, связан с состоянием эндотелия. В неповрежденных эндотелиальных клетках содержится достаточно простациклинсинтетазы и весь ПГГ2 превращается в простациклин. Если же эндотелий поврежден, то этого фермента будет недоставать и потому часть ПГГ превращается в тромбоксан 2. Арахидоновый каскад представляет интерес еще и потому, что в ходе его образуются свободные радикалы, которые могут повреждать клеточные мембраны, в том числе и лизосоЛейкотриены оказывают хемотаксическое и хемокинетическое (нецеленаправленное движение) действие, повышают проницаемость, вызывают сокращение гладких мышц, индуцируют образование тромбоксанов.

з гуморальных медиаторов воспаления наибольшее значение имеют кинины — группа вазоактивных полипептидов, образующихся в результате каскада биохимических реакций, начинающихся с активации фактора Хагемана (рис. 12.4). Соприкосновение с поврежденной поверхностью или изменение внутренней среды (температура, рН) приводит к тому, что этот фактор становится активным и действует на находящийся в плазме прекалликреин, превращая его в калликреин. Последний в свою очередь влияет на α2-глобулины, отщепляя от них полипептидную цепочку, состоящую из 9 (брадикинин) или 10 аминокислотных остатков (каллидин). Плазменные кинины оказывают непосредственное влияние на тонус и проницаемость сосудистой стенки, вызывая расширение прекапиллярных артериол и увеличивая проницаемость стенки капилляров. Кроме того, они обусловливают типичные для воспаления зуд и боль. Медиаторы калликреин-кининовой системы при воспалении влияют на реологические свойства крови, т.е. на ее способность находиться в жидком и текучем состоянии. Из рис. 12.4 видно, что активный фактор Хагемана может инициировать процессы кининообразования, гемокоагуляции и фибринолиза. Выпадение нитей фибрина и образование тромбов в зоне воспаления определенным образом связаны с состоянием калликреин-кининовой системы.

К гуморальным медиаторам воспаления относятся компоненты комплемента.

3. 2. Вторичные - симптоматические артериальный гипертензии - в связи с каким либо заболеванием, первично не связанные с повышением АД, но оно повышается по ходу заболевания как симптом болезни:

а) нефрогенная (почечная - 7-8 %),

б) ренопривная (при удалении обеих почек),

в) эндокринопатическая (надпочечниковая),

г) неврогенная,

д) гемодинамическая,

е) застойная (при пороках сердца, осложненных сердечной недостаточностью).

2. Неврогенные симптоматические артериальные гипертензии:

а) центрогенные - связанные с поражением головного мозга - энцефалит, опухоли, кровоизлияния, ишемия, травмы (в эксперименте - путем создания у животных отрицательных эмоций - страха, ярости, невозможности избежать опасности; перенапряжения ВНД - выработка сложных дифференцировочных рефлексов, перестройка стереотипов, извращение суточных ритмов, перевязка сосудов, сдавление мозговой ткани).

б) периферические - связанные с поражением периферической НС - при полиомиэлите, полиневрите; рефлексогенная (растормаживания) у больных атеросклерозом сосудистая стенка малорастяжима ? уменьшение раздражения барорецепторов и повышение АД (в эксперименте при перерезке депрессорных нервов от аорты или каротидных синусов).

3. Эндокринопатическая артериальная гипертензия:

а) при гормональных опухолях гипофиза - акромегалия + повышение АД, болезнь Иценко-Кушинга + повышение уровня кортизола;

б) при опухолях коры надпочечников - повышение уровня глюкокортикоидов, минералокортикоидов > гиперальдостеронизм, феохромоцитома > повышение уровня норадреналина;

в) при диффузном токсическом зобе - повышение уровня тироксина > гиперкинезия;

г) при дискринии в период климакса.

4. Гемодинамическая артериальная гипертензия:

а) при снижении эластичности стенок аорты и крупных сосудов не происходит адекватного растяжения сосудистой стенки пульсовой волной, проходящей по сосудам;

б) гипертензия при недостаточности аортального клапана обусловлена увеличением конечного диастолического объема крови в левом желудочке в следствие регургитации крови из аорты в период диастолы;

в) гипертензия при коарктации аорты связана с одной стороны с резким повышением сопротивления кровотоку на участке сужения аорты, а с другой стороны - с нарушением кровоснабжения почек, поскольку почечные артерии отходят ниже места коарктации;

г) сужение сонных, позвоночных или базиллярной артерии ведет к ишемизации мозга - цереброишемическая артериальная гипертензия;

д) чисто диастолическая артериальная гипертензия развивается при повышении периферического сопротивления артериальному кровотоку из-за снижения пропульсивной функции левого желудочка при миокардитах или надостаточностью его из-за перенапряжения или нарушения венозного возврата крови к сердцу.

Билет 13

  1. Болезни обмена – фенилкетонурия, галактоземия, подагра, гликогенозы,гомоцистинурия, порфирии и т.д.

Генные болезни-обусловлены генными мутациями.

По фенотипическому проявлению:

• связанные с нарушением обменов

- аминокислотного

-углеводного

-липидного

-минерального

-нуклеиновых кислот

•нарушения свертывания крови

•гемоглобинопатии

Основные механизмы развития наследственной патологии связаны с:

1) мутациями(инициальное звено), в результате кот возникает

а) выпадение нормальной наследственной информации,

б) увеличение объема нормальной наследственной информации,

в) замена нормальной наследственной информации на патологическую;

2) нарушением репарации поврежденной ДНК;

3) стойкими изменениями регуляции генной активности.

Заключительное звено-реализация действия аномального гена (генов).

Основные ее варианты:

1. Если аномальный ген утратил код программы синтеза структурного или функционально важного белка нарушается синтез соответствующих и-РНК и белка.(гемофилия)

2. Утрата мутантным геном кода программы синтеза того или иного фермента завершается уменьшением или прекращением его синтеза, дефицитом его в крови и тк и нарушением катализируемых им процессов(ряд болезней аминокислотного, углеводного обмена и др.)

3. Формирование гена с патологическим кодом,вследствие синтезируется аномальная РНК и аномальный белок с измененными свойствами(серповидно-клеточная анемия)

  • Фенилкетонурия-дефект ферментов фенилаланингидроксилазы (фенилаланин→тирозин)и тирозиназы(тирозин→меланин). «Мышиный запах» от больных.Повышенная возбудимость и тонус мышц,тремор,эпилептиформные припадки.Позже-нарушения ВНД,умственная отсталость,микроцефалия.Нарушение синтеза меланина.

  • Алкаптонурия-генетический дефект оксидазы,катализирующей превращение гомогентизиновой к-ты в малеилацетоуксусную.Первая откладывается в соединительной тк.→пигментация цвета охры.Потемнение мочи при стоянии на воздухе.Поражение суставов конечностей и позвоночника.

  • Галактоземия-недостаточность фермента галактозо-1-фосфата,переводящей галактозо-1-фосфат в уридиндифосфогалактозу.Происходит накопление галактозы и галактоза-1-фосфата в крови и др.тк.Желтуха новорожденных,рвота и понос,приводящие к обезвоживанию организма,умственная отсталость,увеличение печени и селезенки,общая дистрофия,катаракта.

2. Воспаление это преимущественно местное проявление общей реакции организма на действие патогенного чрезвычайного раздражителя. В этот, по преимуществу местный процесс, в той или иной степени вовлекается весь организм и прежде всего такие системы как нервная, эндокринная и иммунная.

роль нервной и эндокринной систем в патогенезе воспаления.

Влияние нервной системы на воспалительный процесс: при нарушении периферической инервации, В. приобретает вялый, затяжной характер. Трофические язвы конечностей, возникающие при ранениях спинного мозга или седалищного нерва, заживают очень длительно. Повреждение инородным телом области серого бугра мозга приводит к обширным воспалительным изменениям кожи и слизистой оболочки, что объясняется изменением трофики тканей.

На характер В. могут влиять как нервные, так и гуморальные факторы. Очень большое значение для воспалительной реакции имеют некоторые гормоны ГГНС, главным образом гормоны коры надпочечников и гипофиза. Соматотропный гормон гипофиза и альдостерон способны повысить воспалительный “потенциал” организма, т.е. усилить В., хоть сами по себе вызвать его не могут. Минералокортикоиды (альдостерон, дезоксикортикостерон) повышая проницаемость стенки сосудов, увеличивая экссудацию и изменяя электролитный состав тканей, оказывают противовоспалительное действие. АКТГ, не обладая бактерицидными свойствами, оказывают противовоспалительное действие, уменьшая воспалительную реакцию.

Глюкокортикоиды, задерживая развитие самых ранних признаков В. (гиперемию, экссудацию, эмиграцию клеток) препятствует возникновению отека, этим свойством глюкокортикоидов широко пользуются в практической медицине. Такое действие глюкокортикоидов объясняется тем, что они уменьшают число тканевых базофилов, снижают активность гистидиндекарбоксилазы и одновременно увеличивают активность фермента, разрушающего гистамин (гистаминаза). Снижается также образование серотонина. Кроме того, замечено, что В. интенсивнее протекает при гипертиреоидозе и отличается вялостью течения при микседеме. При сахарном диабете часто наблюдается фурункулез.

ЗНАЧЕНИЕ ВОСПАЛЕНИЯ ДЛЯ ОРГАНИЗМА

Как и при других типических процессах, вредное и полезное сочетается в неразрывной связи. В нем сочетается и мобилизация защитных сил организма, и явления повреждения, “полома”. Организм защищается от воздействия чуждых и вредных ему факторов путем отграничения воспалительного очага от всего организма, формирования вокруг очага В. своеобразного барьера с односторонней проницаемостью. Локализация очага В. препятствует распространению инфекции. За счет экссудации снижается концентрация токсических веществ в самом очаге В. Воспаленная зона не только фиксирует, но и поглощает токсические вещества, обеспечивает их детоксикацию. В очаге В. создаются также и неблагоприятные условия для жизни м/о.

3. Почечная артериальная гипертензия:

а) артериальная гипертензия может быть при нефропатии беременных; при аутоиммуно-аллергических заболеваниях почек, как воспалительных (диффузные гломерулонефриты, коллагенозы), так и при дистрофических (амилоидоз, диабетический гломерулосклероз).

Например, у больных с хроническим диффузным гломерулонефритом имеется пролиферативно-склерозирующий процесс в почечной ткани с запустеванием части клубочков, сдавлением приводящих сосудов и в итоге повышением АД.

б) при инфекционных интерстециальных заболеваниях почек - при хроническом пиелонефрите наблюдается гипертрофия и гиперплазия юкстагломеруллярного аппарата и стойкое усиление секреции ренина. Нефрогенный характер артериальной гипертензии при хроническом одностороннем пиелонефрите подтверждается результатами хирургического лечения - если вторая почка без патологии, то после удаления больной почки АД нормализуется.

в) реноваскулярная или вазоренальная - при нарушении кровоснабжения почек и при врожденных сужениях артерий,или гипоплазии их, аневризмах, при приобретенных поражениях артерий при атеросклерозе, тромбозе, кальценозе, сдавлении рубцами, гемотомами, новообразованиями (в эксперименте - винтовой зажим, резиновая капсула).

В этом случае ведущая роль в стимуляции секреции ренина принадлежит уменьшению кровотока в почечных артериях.Образующийся ангиотензин-II оказывает прямое прессорное действие и стимулирует синтез альдостерона, который в свою очередь увеличивает накопление Na+ в сосудистых стенках и усиливает прессорные реакции.

г) при урологических заболеваниях почек и мочевыводящих путей (врожденных - гипоплазия почек, поликистоз) или приобретенных (почечнокаменная болезнь, опухоли структуры мочевыводящих путей), при травмах почек, с образованием гематом в околопочечниковой клетчатке.

д) ренопривная артериальная гипертензия развивается после удаления обеих почек.В норме в почках вырабатываются антигипертензивные факторы - кинины и простагландины и при их недостатке повышается АД. Особенное значение при этой гипертензии имеет нарушение равновесия в содержании в тканях и тканевых жидкостях Na+ и K+. Ренопривная гипертензия сопровождается отеками, причем отеки исчезают и АД нормализуется, если при лечении применяется аппарат "искусственная почка" с соответствующим подбором электролитов в перфузуонной жидкости.

Билет 14

а) аутосомно-доминантные, в основе которых лежит нарушение синтеза структурных белков или белков, выполняющих специфические функции. Действие мутантного гена проявляется почти в 100%. Вероятность развития болезни в потомстве составляет 50%. Один из родителей больного ребенка (мальчика или девочки) обязательно болен. По этому типу наследуются синдактилия, полидактилия, синдром Марфана, талассемия, геморрагическая телеангиэктазия, нейрофиброматоз, эллиптоцитоз и др.;

б) аутосомно-рецессивные. При этом типе наследования мутантный ген проявляется только в гомозиготном состоянии. Больные мальчики и девочки рождаются с одинаковой частотой. Вероятность рождения больного ребенка составляет 25%. Родители могут быть фенотипически здоровыми, но являются гетерозиготными носителями мутантного гена. По этому типу наследуются фенилкетонурия, алкаптонурия, альбинизм и другие энзимопатии, дефект твердого неба и верхней губы ("волчья пасть" и "заячья губа"), миоклоническая эпилепсия и др.;

в) рецессивное наследование, сцепленное с Х–хромосомой. Действие мутантного гена проявляется только при XY–наборе половых хромосом, т.е. у мальчиков. Вероятность рождения больного мальчика у матери–носительницы мутантного гена – 50%. Девочки практически здоровы, но половина из них является носительницами мутантного гена (кондукторами). Родители здоровы. Больной отец не передает болезнь сыновьям (от деда к внуку через мать–кондуктора). По этому типу наследуются гемофилия, миопатия, мышечная дистрофия Дюшенна, подагра и Др.;

г) доминантное наследование, сцепленное с Х–хромосомой. Действие доминантного мутантного гена проявляется в любом наборе половых хромосом: XX, XY, ХО и т.д. Проявление заболевания не зависит от пола, но более тяжело протекает у мальчиков. Среди детей больного мужчины в случае такого типа наследования все сыновья здоровы, а все дочери больны. Больные женщины передают измененный ген половине сыновей и дочерей. Данный тип наследования прослеживается при фосфат–диабете – наследственном заболевании, при котором нарушена реабсорбция фосфора в почечных канальцах; отмечается остеопороз, остеомаляция, деформация костей, гипофосфатемия.

2.

Вызванное воспалением проникновение нейтрофилов из сосудов в ткани обеспечивается рядом адгезивных взаимодействий между лейкоцитами и клетками эндотелия, а также действием хемокинов.

Различают Е-селектины (на клетках эндотелия), L-селектины (на лейкоцитах) и бета-селектины (на тромбоцитах). Селектины связываются с углеводными остатками на поверхности лейкоцитов и клеток эндотелия и участвуют в миграции клеток в очаг воспаления.

Интегрины — основные молекулы межклеточной адгезии. Это гетероди-меры, состоящие из а- и бета-субъединиц, соединенных нековалентными связями. Интегрины пронизывают клеточную мембрану и через адаптерные молекулы талин и винкулин связываются с цитоскелетом. В зависимости от типа цепи, входящей в состав молекулы, выделяют три семейства интегринов.

Бета1-Интегрины обеспечивают связывание клеток с внеклеточным матриксом. Бета2-Интегрины участвуют в адгезии лейкоцитов к клеткам эндотелия. р3-Интегрины обусловливают взаимодействие тромбоцитов и нейтрофилов. Дефицит Р2-интегрина LFA-1 (CD18/CD11) приводит к развитию врожденного дефекта фагоцитов — синдрома дефицита адгезии лейкоцитов (LAD-синдром), сопровождающегося тяжело протекающими инфекционными заболеваниями бактериальной и грибковой природы, уменьшением миграции фагоцитов в ткани.

Вызванный воспалением процесс проникновения лейкоцитов в ткани из сосудистого русла обеспечивается рядом адгезивных взаимодействий и включает несколько этапов:

• роллинг (перекатывание);

• адгезию;

• проникновение в ткани.

Рассмотрим этапы проникновения лейкоцитов в ткани на примере ней-трофилов. Первый этап — роллинг (качение) нейтрофилов по поверхности клеток эндотелия — происходит при учас?ии селектинов. В норме клетки эндотелия сосудов не несут молекул адгезии. При активации в очаге воспаления клетки начинают экспрессировать Е-селектины и рецепторы для селектинов. Скорость нейтрофилов в кровотоке замедляется за счет взаимодействия Е-селектина и углеводной детерминанты Lewis-X, связаннйой с СD15-молекулой нейтрофила.

L-селектины нейтрофилов взаимодействуют с сиаломуцином (CD34), расположенным на эндотелии. Активированные эндотелиальные клетки секретируют ИЛ-8, индуцирующий смену селектинов на поверхности нейтрофилов и стимулирующий экспрессию р2-интегринов. Активация клеток эндотелия происходит при развитии местной воспалительной реакции под действием локально образующихся нровоспалительных цитокинов ИЛ-1 и ФНО-а.

Второй этап — адгезия — образование прочных связей между лейкоцитами и эндотелиальными клетками, осуществляемое за счет интегриновых взаимодействий. Лигандами (32-интегринов служат молекулы группы ICAM.

Третий этап — миграция нейтрофилов между клетками эндотелия (трансэндотелиальная миграция) осуществляется под действием хемокинов.

Последующая миграция нейтрофилов в ткани основана на хемотаксисе. Хемоаттрактанты для нейтрофилов существуют в очаге воспаления.

К ним относятся фактор активации тромбоцитов (ФАТ), лейкотриен В4, компоненты комплемента (С5а), N-формил-метионил-пептиды бактерий, ИЛ-8. Провоспалительные цитокины повышают уровень экспрессии р2-интегринов, ICAM-1, ИЛ-8.

Соседние файлы в папке Экзамен