
- •1 Простые и сложные вещества, хим элементы
- •4 Закон сохранения массы веществ. Закон постоянства состава
- •5. Закон эквивалентов и закон кратных отношений
- •6 Газовые законы
- •7 Таблица Менделеева
- •Периодический закон
- •8 Ядерная модель атома Резерфорда
- •9 Квантовая теория строения атома Бора. Корпускулярно-волновая теория.
- •10 Главное квантовое число . Физический смысл и численные значения
- •11 Орбитальное квантовое число. Формы электронных облаков
- •12 Главное, орбитальное, магнитное, спиновые числа для волновых функций частиц
- •13 Принцип Паули. Распределение электронов в атоме по состояниям.
- •14 Запрет Паули ,Правило Хунда
- •15 Основные типы и характеристики химической связи
- •16 Ковалентная связь. Способы образования – обменный и донорно-акцепторный. Свойства ковалентной связи.
- •17 Ионная связь. Энергия ионной кристаллической решетки. Механизм образования и свойства ионной связи.
- •18 Металлическая и водородная связь. Механизм образования и свойства.
- •19 Характеристика раствора. Процесс растворения, растворитель . Насыщенный раствор , растворимость, зависимость растворимости от температуры. Критическая температура растворимости
- •20 Способы выражения концентрации растворов
- •21. Гидраты и кристаллогидраты. Понятие связанной и кристаллизационной воды. Двление пара растворов. Закон Рауля.
- •22 Превращение энергии в химических реакциях. Экзо- эндотермические реакции
- •24 Основные термодинамические функции состояния системы. Энтропия. Стандартная энтропия. Изменение энтропии в различных процессах.
- •26. Направленность протекания реакций при разных знаках термодинамических функций состояния
- •28 Зависимость скорости реакции от концентрации реагирующих веществ. Закон действия масс.
- •29 Зависимость скорости реакции от температуры. Правило Вант-Гоффа.
- •30 Понятие энергии активации. Уравнение Аррениуса.
- •32 Химическое равновесие. Необратимые и обратимые процессы.
- •33 Факторы определяющие направление протекания хим. Реакций
- •34 Понятие константы равновесия
- •35. Смещение химического равновесия принцип ле шателье
- •Принцип Ле-Шателье
- •36. Типы химических реакций.
- •37 Теория электролитической диссоциации . Процесс диссоциации. Сильные и слабые. Степень диссоциации. Сила электролитов.
- •38. Электролиты. Правило Бертолле. Ионообменные реакции и условия их протекания.
- •39. Понятие константа диссоциации. Закон разбавление Оствальда
- •Водородный показатель pH
- •41. Гидролиз солей
- •42. Константа и степень гидролиза . Определение кислотности среды при различных случаях гидролиза.
- •43. Классификация, строение, основные способы получения и свойства комплексных соединений . Устойчивость комплексных соединений.
- •44. Окислительно-восстановительные реакции. Понятие об окислителе и восстановителе. Важнейшие окислители и восстановители.
- •45 Типы окислительно-восстановительных реакций
- •46.Электродный потенциал металла. Гальванические элементы.
- •47. Нормальный водородный электрод . Уравнение Нернста. Автомобильный аккумулятор.
- •49 Коррозия металлов. Классификация коррозионных процессов.
- •50. Химическая коррозия. Способы защиты от коррозии.
- •51. Коррозия металлов. Электрохимическая коррозия. Способы защиты.
- •52. Кислородная и водородная деполяризация.
18 Металлическая и водородная связь. Механизм образования и свойства.
Металлическая связь – это тип связи в металлах и их сплавах между атомами или ионами металлов и относительно свободными электронами (электронным газом) в кристаллической решетке.
Металлы – это химические элементы с низкой электроотрицательностью, поэтому они легко отдают свои валентные электроны. Если рядом с элементом металлом находится неметалл, то электроны от атома металла переходят к неметаллу. Такой тип связи называется ионный (рис.
В случае простых веществ металлов или их сплавов, ситуация меняется. При образовании молекул электронные орбитали металлов не остаются неизменными. Они взаимодействуют между собой, образуя новую молекулярную орбиталь. В зависимости от состава и строения соединения, молекулярные орбитали могут быть как близки к совокупности атомных орбиталей, так и значительно от них отличаться. При взаимодействии электронных орбиталей атомов металла образуются молекулярные орбитали. Такие, что валентные электроны атома металла, могут свободно перемещаться по этим молекулярным орбиталям. Не происходит полное разделение, заряда, т. е. металл – это не совокупность катионов и плавающих вокруг электронов. Но это и не совокупность атомов, которые иногда переходят в катионную форму и передают свой электрон другому катиону. Реальная ситуация – это совокупность двух этих крайних вариантов.
Сущность образования металлической связи состоит в следующем: атомы металлов отдают наружные электроны, и некоторые из них превращаются в положительно заряженные ионы. Оторвавшиеся от атомов электроны относительно свободно перемещаются между возникшими положительными ионами металлов. Между этими частицами возникает металлическая связь, т. е. электроны как бы цементируют положительные ионы в металлической решетке
Водородная связь образуется между сильно поляризованным, обладающим значительной долей положительного заряда атомом водорода и другим атомом с очень высокой электроотрицательностью: фтором, кислородом или азотом.
Водородная связь При изучении многих веществ были обнаружены так называемые водородные связи. Например, молекулы HF в жидком фтороводороде связаны между собой водородной связью, аналогично связаны молекулы Н2О в жидкой воде или в кристалле льда, а также молекулы NH3 и Н2О между собой в межмолекулярном соединении - гидрате аммиака NH3 · Н2О.
Водородная связь образуется за счёт сил электростатического притяжения водородсодержащих полярных молекул, содержащих атомы наиболее электроотрицательных элементов - F, O, N. Например, водородные связи имеются в HF, Н2О, NH3, но их нет в HCl, Н2S, PH3. Водородные связи малоустойчивы и разрушаются довольно легко (например при плавлении льда, кипении воды). Однако на разрыв этих связей затрачивается некоторая дополнительная энергия, и поэтому температуры плавления и кипения веществ с водородными связями между молекулами оказываются значительно выше, чем у подобных веществ, но без водородных связей: