
- •1 Простые и сложные вещества, хим элементы
- •4 Закон сохранения массы веществ. Закон постоянства состава
- •5. Закон эквивалентов и закон кратных отношений
- •6 Газовые законы
- •7 Таблица Менделеева
- •Периодический закон
- •8 Ядерная модель атома Резерфорда
- •9 Квантовая теория строения атома Бора. Корпускулярно-волновая теория.
- •10 Главное квантовое число . Физический смысл и численные значения
- •11 Орбитальное квантовое число. Формы электронных облаков
- •12 Главное, орбитальное, магнитное, спиновые числа для волновых функций частиц
- •13 Принцип Паули. Распределение электронов в атоме по состояниям.
- •14 Запрет Паули ,Правило Хунда
- •15 Основные типы и характеристики химической связи
- •16 Ковалентная связь. Способы образования – обменный и донорно-акцепторный. Свойства ковалентной связи.
- •17 Ионная связь. Энергия ионной кристаллической решетки. Механизм образования и свойства ионной связи.
- •18 Металлическая и водородная связь. Механизм образования и свойства.
- •19 Характеристика раствора. Процесс растворения, растворитель . Насыщенный раствор , растворимость, зависимость растворимости от температуры. Критическая температура растворимости
- •20 Способы выражения концентрации растворов
- •21. Гидраты и кристаллогидраты. Понятие связанной и кристаллизационной воды. Двление пара растворов. Закон Рауля.
- •22 Превращение энергии в химических реакциях. Экзо- эндотермические реакции
- •24 Основные термодинамические функции состояния системы. Энтропия. Стандартная энтропия. Изменение энтропии в различных процессах.
- •26. Направленность протекания реакций при разных знаках термодинамических функций состояния
- •28 Зависимость скорости реакции от концентрации реагирующих веществ. Закон действия масс.
- •29 Зависимость скорости реакции от температуры. Правило Вант-Гоффа.
- •30 Понятие энергии активации. Уравнение Аррениуса.
- •32 Химическое равновесие. Необратимые и обратимые процессы.
- •33 Факторы определяющие направление протекания хим. Реакций
- •34 Понятие константы равновесия
- •35. Смещение химического равновесия принцип ле шателье
- •Принцип Ле-Шателье
- •36. Типы химических реакций.
- •37 Теория электролитической диссоциации . Процесс диссоциации. Сильные и слабые. Степень диссоциации. Сила электролитов.
- •38. Электролиты. Правило Бертолле. Ионообменные реакции и условия их протекания.
- •39. Понятие константа диссоциации. Закон разбавление Оствальда
- •Водородный показатель pH
- •41. Гидролиз солей
- •42. Константа и степень гидролиза . Определение кислотности среды при различных случаях гидролиза.
- •43. Классификация, строение, основные способы получения и свойства комплексных соединений . Устойчивость комплексных соединений.
- •44. Окислительно-восстановительные реакции. Понятие об окислителе и восстановителе. Важнейшие окислители и восстановители.
- •45 Типы окислительно-восстановительных реакций
- •46.Электродный потенциал металла. Гальванические элементы.
- •47. Нормальный водородный электрод . Уравнение Нернста. Автомобильный аккумулятор.
- •49 Коррозия металлов. Классификация коррозионных процессов.
- •50. Химическая коррозия. Способы защиты от коррозии.
- •51. Коррозия металлов. Электрохимическая коррозия. Способы защиты.
- •52. Кислородная и водородная деполяризация.
50. Химическая коррозия. Способы защиты от коррозии.
Химическая коррозия — это разрушение металла из-за окисления его окислителями, находящимися в коррозионной среде.
Химическая коррозия протекает без возникновения электрического тока в системе. Такой вид коррозии возникает при контакте металлов с неэлектролитами или в газовой среде при высоких температурах (газовая коррозия)
Газовая коррозия встречается довольно часто. С ней мы сталкиваемся при коррозии металлов в печах, выхлопных трубах и т.п. Наиболее опасными для металлов компонентами газовой среды являются кислород, пары воды, оксид углерода (IV), оксид серы (IV). Коррозионное разрушение железа и его сплавов на воздухе обусловлено окислением его кислородом воздуха.
С повышением температуры скорость газовой коррозии возрастает. Наибольший вред приносит электрохимическая коррозия.
Жидкостная коррозия металлов– может протекать в таких неэлектролитах, как нефть, смазочные масла, керосин и др. Этот тип коррозии при наличии даже небольшого количества влаги, может легко приобрести электрохимический характер.
При химической коррозии скорость разрушения металла пропорциональна скорости химической реакции и той скорости с которой окислитель проникает сквозь пленку оксида металла, покрывающую его поверхность. Оксидные пленки металлов могут проявлять или не проявлять защитные свойства, что определяется сплошностью.
Сплошность такой пленки оценивают величине фактора Пиллинга—Бэдвордса: (α = Vок/VМе) по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла
α = Vок/VМе = Мок·ρМе/(n·AMe·ρок),
где Vок — объем образовавшегося оксида; VМе — объем металла, израсходованный на образование оксида;
Мок – молярная масса образовавшегося оксида; ρМе – плотность металла; n – число атомов металла
AMe — атомная масса металла; ρок — плотность образовавшегося оксида.
Основные способы защиты
Антикоррозийные способы можно сгруппировать, опираясь на следующие методы:
1 электрохимический метод — позволяет уменьшить разрушительный процесс на основе закона гальваники;
2 уменьшение агрессивной реакции производственной среды;
3 химическое сопротивление металла;
4 защита поверхности металла от неблагоприятного воздействия окружающей среды.
Защиту поверхности и гальванический метод применяют уже в момент эксплуатации металлических конструкций и изделий.
К ним относятся следующие способы защиты: катодная, протекторная, а также ингибиторная.
Электрохимическая защита основана на действии электрического тока, под его постоянным воздействием коррозия прекращается.
Внедрение ингибиторов в агрессивную среду, которая соприкасается с металлом, позволяет снизить скорость коррозийных процессов.
Химическое сопротивление и защита поверхности относятся к пленочным способам сохранения. Они уже могут применяться как на стадии изготовления металлоизделий, так и в момент эксплуатации.
Выделяют следующие способы: лужение, оцинковку, покраску и прочее. Краска, как защитное покрытие от ржавчины — самый распространенный и используемый метод.