
- •1 Простые и сложные вещества, хим элементы
- •4 Закон сохранения массы веществ. Закон постоянства состава
- •5. Закон эквивалентов и закон кратных отношений
- •6 Газовые законы
- •7 Таблица Менделеева
- •Периодический закон
- •8 Ядерная модель атома Резерфорда
- •9 Квантовая теория строения атома Бора. Корпускулярно-волновая теория.
- •10 Главное квантовое число . Физический смысл и численные значения
- •11 Орбитальное квантовое число. Формы электронных облаков
- •12 Главное, орбитальное, магнитное, спиновые числа для волновых функций частиц
- •13 Принцип Паули. Распределение электронов в атоме по состояниям.
- •14 Запрет Паули ,Правило Хунда
- •15 Основные типы и характеристики химической связи
- •16 Ковалентная связь. Способы образования – обменный и донорно-акцепторный. Свойства ковалентной связи.
- •17 Ионная связь. Энергия ионной кристаллической решетки. Механизм образования и свойства ионной связи.
- •18 Металлическая и водородная связь. Механизм образования и свойства.
- •19 Характеристика раствора. Процесс растворения, растворитель . Насыщенный раствор , растворимость, зависимость растворимости от температуры. Критическая температура растворимости
- •20 Способы выражения концентрации растворов
- •21. Гидраты и кристаллогидраты. Понятие связанной и кристаллизационной воды. Двление пара растворов. Закон Рауля.
- •22 Превращение энергии в химических реакциях. Экзо- эндотермические реакции
- •24 Основные термодинамические функции состояния системы. Энтропия. Стандартная энтропия. Изменение энтропии в различных процессах.
- •26. Направленность протекания реакций при разных знаках термодинамических функций состояния
- •28 Зависимость скорости реакции от концентрации реагирующих веществ. Закон действия масс.
- •29 Зависимость скорости реакции от температуры. Правило Вант-Гоффа.
- •30 Понятие энергии активации. Уравнение Аррениуса.
- •32 Химическое равновесие. Необратимые и обратимые процессы.
- •33 Факторы определяющие направление протекания хим. Реакций
- •34 Понятие константы равновесия
- •35. Смещение химического равновесия принцип ле шателье
- •Принцип Ле-Шателье
- •36. Типы химических реакций.
- •37 Теория электролитической диссоциации . Процесс диссоциации. Сильные и слабые. Степень диссоциации. Сила электролитов.
- •38. Электролиты. Правило Бертолле. Ионообменные реакции и условия их протекания.
- •39. Понятие константа диссоциации. Закон разбавление Оствальда
- •Водородный показатель pH
- •41. Гидролиз солей
- •42. Константа и степень гидролиза . Определение кислотности среды при различных случаях гидролиза.
- •43. Классификация, строение, основные способы получения и свойства комплексных соединений . Устойчивость комплексных соединений.
- •44. Окислительно-восстановительные реакции. Понятие об окислителе и восстановителе. Важнейшие окислители и восстановители.
- •45 Типы окислительно-восстановительных реакций
- •46.Электродный потенциал металла. Гальванические элементы.
- •47. Нормальный водородный электрод . Уравнение Нернста. Автомобильный аккумулятор.
- •49 Коррозия металлов. Классификация коррозионных процессов.
- •50. Химическая коррозия. Способы защиты от коррозии.
- •51. Коррозия металлов. Электрохимическая коррозия. Способы защиты.
- •52. Кислородная и водородная деполяризация.
Водородный показатель pH
Кислотно – основные свойства растворов определяются величиной концентрации ионов водорода или гидроксила. Мы уже знаем, что ионное произведение воды при определенной температуре постоянно, а [H+] и [OH—] — переменные, то по их величинам можно говорить о кислотности или щелочности раствора. При нейтральном характере раствора, т.е. [H+] = [OH—], получаем следующее:
[H+] = [OH—] = (KН2О)1/2 = (1·10-14)1/2 = 10-7 М
Увеличение или уменьшение концентраций иона водорода или гидроксид — иона меняет характер среды.
Следует помнить, что не зависимо от характера среды, в водных растворах всегда существуют оба иона.
Выражение характера среды данным способом информативно, но сопряжено с некоторыми трудностями в случае выражения небольших значений концентрации иона водорода. Более удобно пользоваться отрицательным логарифмом этой величины, называемой водородным показателем pH:
pH = -lg[H+] = lg (1/[H+])
Отметим, что изменению [H+] в 10 раз соответствует изменение pH всего на 1 единицу.
pOH = -lg[OH—] = lg (1/[OH—])
pH и pOH нейтрального раствора равен 7:
pH = -lg[H+] = -lg(1·10-7) = 7
Нейтральная среда |
pH = pOH = 7, pH + pOH = 14 |
Кислая среда |
pH ˂ pOH, pH ˂ 7, pH + pOH = 14 |
Щелочная среда |
pH > pOH, pH > 7, pH + pOH = 14 |
41. Гидролиз солей
гидролиз солей – это процесс обменного разложения воды и растворенной в ней соли – электролита, приводящий к образованию малодиссоциирующего вещества. Гидролиз является частным случаем сольволиза – обменного разложения растворенного вещества и растворителя.
Характеризовать гидролиз количественно позволяют такие величины, как Степень гидролиза и константа гидролиза.
42. Константа и степень гидролиза . Определение кислотности среды при различных случаях гидролиза.
В общем случае, гидролиз солей – это процесс обменного разложения воды и растворенной в ней соли – электролита, приводящий к образованию малодиссоциирующего вещества.
Гидролиз является частным случаем сольволиза – обменного разложения растворенного вещества и растворителя.
Характеризовать гидролиз количественно позволяют такие величины, как Степень гидролиза и константа гидролиза.
Степень гидролиза — это соотношение количества подвергающейся гидролизу соли nгидр и общего количества растворенной соли nобщ. Обычно, ее обозначают через hгидр (или α ):
Нгидр = (n Гидр/n общ)·100 %
Величина Н гидр увеличивается с уменьшением силы образующих соль кислоты или основания.
Константа гидролиза
Представим в общем виде процесс гидролиза соли, в котором в роли соли выступает – МА, а НА и МОН — соответственно, кислота и основание, которые образуют данную соль:
MA + H2O ↔ HA + MOH
Применив закон действующих масс, запишем константу, соответствующую этому равновесию:
K = [HA]·[MOH]/[MA]·[H2O]
Известно, что концентрация воды в разбавленных растворах, имеет практически постоянное значение, поэтому ее можно включить в константу
K·[H2O]= Kг,
тогда для константы гидролиза соли Kг будет иметь такой вид:
Kг = [HA]·[MOH]/[MA]
По величине константы гидролиза можно судить о полноте гидролиза: чем больше ее значение, тем в большей мере протекает гидролиз.
Константа и степень гидролиза связаны соотношением:
Kг = С·h2/(1- h), моль/л
Где С – концентрация соли в растворе, h- степень гидролиза
Это выражение можно упростить, т.к. обычно h˂˂1, тогда
Kг = С·h2
Зная, константу гидролиза, можно определить pH среды:
Kг = [HA]·[MOH]/[MA]
Концентрация образовавшейся кислоты равна концентрации гидроксид ионов, тогда
Kг = [OH—]2/[MA]
Используя это выражение можно вычислить pH раствора
[OH—] = (Kг·[MA])1/2 моль/л
[H+] = 10-14/[OH—] моль/л
pH = -lg[H+]
Соли, образованные сильным основанием и сильной кислотой
Соли, образованные сильным основанием и сильной кислотой не подвергаются гидролизу. В этом случае, гидролиз практически не происходит, т.к. катионы и анионы, образующиеся в растворе при диссоциации соли, слабо поляризуют гидратную оболочку. pH среды не изменяется (рН ≈ 7):
Соли, образованные слабым основанием и сильной кислотой
Такое соединение, при ионизации, образует катионы, способные к поляризации гидратной оболочки и анионы, которые их поляризуют слабо. Тогда гидролиз проходит по катиону, при этом среда носит кислый характер, т.е. рН ˂ 7. Для солей, образованных слабым основанием и сильной кислотой, константа гидролиза и константа диссоциации основания связаны соотношением:
Понятно, что чем меньше сила основания, тем в большей степени протекает гидролиз.
Если соль образованна слабым основанием многовалентного металла и сильной кислотой, то ее гидролиз будет протекать ступенчато.
Константа гидролиза по первой ступени связана с константой диссоциации основания по второй ступени, а константа гидролиза по второй ступени — с константой диссоциации основания по первой ступени:
Поскольку первая константа диссоциации кислоты всегда больше второй, то первая константа гидролиза всегда больше, чем константа вторая гидролиза, так как первая константа диссоциации основания всегда больше второй
Kг1 > Kг2
Отсюда следует, что по первой ступени, гидролиз всегда будет протекать в большей степени, чем по второй. Этому также способствуют ионы, которые образуются при гидролизе по первой ступени, они приводят подавлению гидролиза по второй ступени, смещая равновесие влево.
Сравнивая величины Kг и Kосн можно качественно определить pH среды. Так, если Kг намного больше Kосн, то среда сильнокислая, при Kг намного меньшей Kосн — среда слабокислая, а если Kг и Kосн сопоставимы, то — среднекислая.
Соль, образованная сильным основанием и слабой кислотой
Такое соединение в растворе образует слабополяризующие катионы и среднеполяризующие анионы. Гидролиз протекает по аниону, и в его результате создается щелочная среда, pH > 7.
Т.е. гидролиз соли протекает тем полнее, чем слабее образующая эту соль, кислота.
Возможен гидролиз соли, образованной слабой многоосновной кислотой и сильным основанием. В этом случае гидролиз протекает по ступеням.
В этом случае, константа гидролиза по первой и второй ступеням определяется соотношениями:
Kг1 = KH2O/Kк-ты2
Kг2 = KH2O/Kк-ты1
Следует помнить, что гидролиз по второй ступени протекает в ничтожно малой степени.
Сравнивая величины Kг и Kк-ты, можно качественно определить pH среды. Так, если Kг намного больше Kк-ты, то среда сильнощелочная, при Kг намного меньшей Kк-ты — среда слабощелочная, а если Kг и Kосн сопоставимы, то — среднещелочная.
Соли, образованные слабым основанием и слабой кислотой
Такие соли, при ионизации образуют среднеполяризующие катионы и анионы, поэтому гидролиз возможен как по катиону, так и по аниону. При этом относительная сила образовавшихся кислоты и основания, будут влиять на характер среды (слабокислая или слабощелочная, pH ≈ 7). Такого типа гидролиз протекает особо полно, обычно с образованием малорастворимого вещества.
Константу гидролиза можно рассчитать, зная константы диссоциации кислоты и основания с помощью следующего соотношения:
Kг = KH2O/(Kк-ты·Kосн)
Влияние различных факторов на протекание гидролиза
1. Природа соли. Это видно из выражения для константы гидролиза.
2. Концентрация соли и продуктов реакции. В соответствии с принципом Ле-Шателье, равновесие должно смещаться вправо, при этом увеличивается концентрация ионов водорода (или гидроксид-ионов), что приводит к уменьшению степени гидролиза.
3. Температура. Известно, что гидролиз притекает с поглощением теплоты (эндотермическая реакция), поэтому согласно принципу Ле Шателье, при увеличении температуры равновесие сдвигается вправо, что ведет к росту степени гидролиза.