- •1. Сист. Отсчета и сист. Координат. Основные хар-ки мех. Движения. Прямолин. И криволин. Движение мат. Точки. Скорость и ускорение.
- •2.Движение материал. Точки по окружности. Нормальное и тангенц.Ускор. Связь угл. И лин. Хар-к. Движ.
- •4.Силы при криволин. Движении.
- •5. Закон всемирного тяготения. Зависимость веса тела от высоты над уровнем моря и геогр. Шир. Гравит. Поле.
- •6. Нормальное гравитационное поле земли и его анамалии
- •7. Гравитационные явления и процессы.
- •8. Орбитальное движение земли и ее осевое вращение. Неравномерности вращение земли, их физическая природа.
- •9. Приливообразующие силы и их геофизическая роль.
- •10.Закон сохранения и изменения количества движения.
- •11.Работа силы и мощность. Кинетическая и
- •2) Потенциальная энергия тела массы m, находящегося в гравитационном поле другого тела массой м на расстоянии r0 от
- •3) Определим потенциальную энергию тела массой m, находящегося на небольшой высоте h над земной поверхностью.
- •12.Гармоническое колебание и его хар-ки. Математический, физический и пружинные маятник.
- •13.Энергия колеблющегося тела. Собственные колебания земли. Сложение гармонических колебаний.
- •14.Волна, ее хар-ки. Продольные и поперечные волны. Принцип гюйгенса. Интенсивность волны.
- •15.Звуковая волна, характеристики звука. Инфразвук и ультразвук. Принцип локации.
- •16.Элементымеханики жидкостей. Основные определения. Уравнение неразравности.
- •18.Осн.Положения молекулярно-кинетической теории строен. В-ва. Межмолекулярные силы. Агрегатные состояния вещества.
- •19.Макроскопические системы. Термодинам. Равновесие. Равновесные и неравновесные процессы. Обратимые и необратимые процессы.
- •20. Газовые законы (бщйля-мариотта, гей-люсака, авогадро). Уравнение состояния идеального газа.
- •21.Барометрическая формула и распред. Больцмана.
- •22. Явление переноса в газах и жидкостях. Диффузия в газа.
- •23.Явление переноса теплопроводность.
- •24. Явление переноса в газах и жидкостях. Внутреннее трение (вязкость).
- •26. Внутренняя энергия идеального газа. Работа и теплота. Закон сохранения энергии.Первое начало термодинамики.
- •27.Электрические заряды и электрическое поле. Закон кулона. Принцип суперрозиции. Напряженость электоростатического поля
- •28.Линии напряженности электростат поля. Поток вектора напряженности. Теор. Остраградского-гаусса
- •29.Примеры вычисления напряженности электрических полей с помощью теоремы остгоградского-гаусса
- •30. Потенциал и работа сил электростатического поля. Циркуляция напряжености электростатического поля вдоль замкнутого контура. Разность потенциалов.
- •31. Градиент потенциала. Связь между потенциалом и напряженностьяю электростатического поля в каждой точке поля.
- •32.Эквипотенциальные поверхности. Изображения сечения простейших электрических полей с помощью эквопотенциальных линий. Работа при перемещении электрического заряда по эквипотенциальнойт поверхности.
- •33. Вычисление потенциалов некоторых простейших электростатических полей (создаваемых точечным зарядом, в плоском и шаровом конденсаторе)
- •1 .Потенциал электрического поля точечного заряда q.
- •3. Шаровой конденсатор.
- •34. Геоэлектрическое поле земли. Электрическая проводимость гидросферы, земной коры и недр.
- •35.Электрическая проводимость атмосферы. Ионосфера, ионные слои. Влияние ионосферы на распространение радиоволн. Нормальное электрическое поле атмосферы. Техногенное воздействие на ионосферу
- •36.Электротеллурическое поле. Региональные и локальные электрические поля земной коры. Вариации мередиональной и широтной напряженности электротеллурического поля.
- •37.Изучение глубинного строения земли с помощью сейсмического зондирования.
- •38.Масса, форма, размеры и строение атмосферы. Слои атмосферы и зависимость т атмосферы от высоты.
4.Силы при криволин. Движении.
Мы рассмотрели, что при криволинейном движении (и движении по окружности) тела вектор ускорения
W = W +Wn | m.
Но согласно 2-му зак. Ньютона, вектор ускорения тела W направлен параллельно действующей силе F и равен F/m. Следовательно, на тело, движущееся по криволинейному пути, действует сила, направленная под тем же углом к траектории, что и вектор ускорения этого тела.
Поскольку из равенства векторов следует и равенство их проекций на любое направление, то и действующая сила F также может быть представлена в виде суммы F +Fn, направленных параллельно соответствующим составляющим ускорения, т.е. по касательной и нормали к траектории тела:
F = mW = mdV/dt; Fn = mWn = mV2/R.
Касательная составляющая силы F направлена по касательной и определяет изменение скорости тела только по величине. Сила Fn, определяющая изменение скорости тела по направлению, называется центростремительной силой.
Рис.
F = m(dV/dt)2 + (V2/R)2 ; tg = Fn/F = V2/(R dV/dt); < 900 – ускоренное движение, > 900 – движение замедленное, = 900 , тогда tg = tg900 = , что возможно при dV/dt = 0. Значит, в этом случае величина V = const, при этом также F = dV/dt = 0, поэтому результирующая сила, действующая на тело, по величине окажется равной
F = F2 + Fn2 = Fn = mV2/R,
т.е. будет являться центростремительной силой, изменяющей лишь направление скорости, но не ее величину. И наоборот, если при криволинейном движении тела величина его скорости не изменяется с течением времени и dV/dt =0, тогда, поскольку tg = , действующая на него сила будет направлена V.
В частности, если точечное тело равномерно движется по окружности радиуса R, то dV/dt = 0 F = m dV/dt = 0 и F = Fn = mV2/R не будет меняться со временем, т.к. R = const и V = const.
Если вращающееся тело удерживается на окружности вращения другим телом, называемым связью, и при этом для движения существенны лишь силы взаимодействия между ними, то центростремительная сила, направленная к центру вращения, будет приложена к самому вращающемуся телу со стороны связи. Согласно 3-му зак. Ньютона, вращающееся тело должно действовать на связь с такой же по величине, но противоположно направленной силой. Эта сила, действующая на связь со стороны вращающегося тела, по величине равна mV2/R и направленая вдоль радиуса от центра вращения, называется центробежной.
ПРИМЕР:
Вращение шарика, привязанного к нити.
Движение автомобиля
Полет самолета во время «петли»
Движение поезда на повороте.
5. Закон всемирного тяготения. Зависимость веса тела от высоты над уровнем моря и геогр. Шир. Гравит. Поле.
Все физические тела испытывают действие сил взаимного тяготения. Основной закон, определяющий силы тяготения, был сформулирован Ньютоном и носит название закона тяготения Ньютона. Закон гласит: между любыми двумя материальными точками действуют силы взаимного притяжения, прямо пропорциональные произведению масс этих точек и обратно пропорциональные квадрату расстояния между ними:
Рис.
F12 = f( m1m2/R2)R12/R , R = |R12| (1)
R12 – радиус вектор, проведенный из точки 1 в точку с m2.
Из (1) имеем Мземли = 6.1024 кг
Коэффициент f называется гравитационной постоянной (постоянной тяготения). Он численно равен силе взаимного притяжения между двумя материальными точками одинаковой единичной массы, которые находятся друг от друга на расстоянии, равном единице длины. Гравитационная постоянная определяется опытным путем, f = (6,67 -+0,01).10-11Н.м2/кг2, (Кавендыш в 1798 г.).
При определении силы взаимного тяготения между двумя телами, которые нельзя считать точками, поступают следующим образом. Разбивают все тело на такие малые частицы, которые можно принять за точки, выбирают во втором теле одну частцу и определяют равнодействующую сил притяжения со стороны всех частиц первого тела. Затем проделывают то же самое для всех остальных частиц второго тела и берут сумму; эта сумма и представляет силу действия первого тела на второе. По третьему закону Ньютона определяют силу, действующую на первое тело.
Вычисления, проделанные для шаров из однородного вещества, показывают, что результирующая сила тяготения приложена в центре каждого щара и равна fm1m2/R2 (R – расстояние между центрами). Т.о закон тяготения в форме (1) верен как для материальных точек, так и для шаров из однородного материала.
Из закона всемирного тяготения можно определить массу Земли. Т.к. сила тяжести mg, действующая на тело массы m, находящееся на поверхности Земли, является силой гравитационного взаимодействия этого тела с Землей, то
Mg = fmMз/R2, откуда Мз = gR2/f. Мз = 6.1024 кг.
Далее, сила тяготения, действующая со стороны Солнца массы М0 на Землю массы Мз, является центростремительной силой, т.к. Земля приблизительно равномерно вращается вокруг Солнца по окружности радиуса R, равного расстоянию от Земли до Солца. Тогда
МзV2/R = fM3M0/R2. (2)
Учитывая, что орбитальная скорость Земли V равна 2R/Т, находим массу Солнца:
M0 = V2R/f = 42R3/fT2,
где Т – период обращения Земли вокруг Солнца.
По этой же формуле может быть найдена и масса планеты Мп, если вокруг нее на расстоянии Rп обращается спутник mс с периодом Тс.
Расстояние от планеты до спутника также находится из формулы (2) или 42R/T2 = fM0/R2, откуда искомое расстояние
R = fM0T2/42,
где Т – период обращения планеты вокруг Солнца.
Напомню, что весом тела называют силу, с которой это тело действует вследствие тяготения к Земле на опору (или на подвес), удерживающую тело от свободного падения.
Вес тела проявляется только тогда, когда тело движется с ускорением, отличным от g , т.е. когда на тело кроме силы тяжести действуют другие силы. Состояние тела, при котором оно движется только под действием силы тяжести, называется состоянием невесомости.
Вес тела зависит от высоты его положения над уровнем моря и географической широты местности.
Так, если на уровне моря сила тяготения, действующая на тело массы m со стороны Земли, равна
F0 = fmM3/R2 (здесь R = 6370 км –радиус Земли),
то на высоте h над уровнем моря
F = fmM3/(R + h)2.
Взяв отношение этих сил, получим
F0/F = (R + h)2/R2 1 + 2h/R. Член h2/R2 – мал по ср. с другими и им пренебрегаем. Тогда
F = F0/(1 + 2h/R) = F0 ( 1 + 2h/R)-1 = F0( 1 – 2h/R),
Т.е. с возрастанием высоты тела h над уровнем моря действующая на него сила тяготения, проявляющаяся как вес тела, уменьшается.
Наличие вблизи взвешиваемых тел гор, участков земной коры с аномальной плотностью и т.п. также влияет на величину их веса. На этом основан один из методов определения плотности горных пород, разведки полезных ископаемых и т.д. (гравиметрический метод).
Поскольку расстояние от центра Земли до полюсов меньше, чем до экватора, то вес того или иного тела на полюсе будет больше, чем на экваторе. Этим отчасти обусловливается зависимость веса тел от геогр. широты местности. Но основной причиной, обусловливающей зависимость веса тел от широты местности, является суточное вращение Земли вокруг своей оси.
На тело, лежащее на поверхности Земли и вращающееся вместе с ней, будет действовать центростремительная сила F = m2Rcos, которая зависит от широты и которая изменяет вес тела. и R угловая скорость вращения и радиус Земли. Вес тела на широте равен
P = mg(1 - 2R cos2 )
g
При перемещении тела от полюса к экватору вес его будет монотонно уменьшаться по величине от значения mg на полюсе до значения mg(1 - 2R/g) на экваторе. Однако и это изменение веса тела с изменением широты местности невелико, т.к. величина 2R/g равна лишь 1/289.
Направление силы веса тела Р, отклоняется от направления на центр Земли на угол , величина которого зависит от широты местности . Сила Р будет направлена к центру Земли только на полюсе и на экваторе. Максимальное отклонение направления веса тела от направления на центр Земли будет на широте = 450.
Итак, сила тяготения mg = fmM/R2 (отсюда g = fM/R2), действующая на тело массы m со стороны Земли и зависящая по величине только от расстояния тела до центра Земли, всегда направлена к центру Земли, не равна весу этого тела, даже если оно покоится относительно Земли.
Движение тела, происходящее под действием только его силы тяжести, наз. свободным падением. Ускорение свободного падения (ускорение силы тяжести) g = P/m. Оно одинаково для всех тел и зависит только от географической широты и высоты над уровнем моря. Стандартное (нормальное) значение g, принятое для расчетов, равно 9,80665 м/с2.
