Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Реферат / шпорки по физике 29.12.2009 г..doc
Скачиваний:
33
Добавлен:
21.04.2017
Размер:
879.62 Кб
Скачать

2.Движение материал. Точки по окружности. Нормальное и тангенц.Ускор. Связь угл. И лин. Хар-к. Движ.

Наиболее общие случаи вращательного движения – вращение свободного тела или тела, закрепленного в одной точке,- весьма сложны и детально рассматриваются в курсах теоретической физики. Для установления основных закономерностей вращательного движения мы рассмотрим простейший случай вращения твердого тела вокруг неподвижной оси.

Абсолютно твердым телом называется такое тело, расстояние между двумя любыми точками которого во время движения остается неизменным.

Рассмотрим абсолютно твердое тело с закрепленной осью ОО, изображенное на рис.3. Проведем через эту ось две плоскости: Q и P.

Рис.3.

Неподвижная плоскость Q будет являться телом отсчета. Подвижная же плоскость Р скреплена с телом и вращается вместе с ним. Мгновенное положение этой плоскости будет характеризоваться величиной двугранного угла . Задание угла поворота  в этом случае целиком определяет положение тела; тело, вращающееся вокруг неподвижной оси, имеет лишь одну степень свободы. Угол  считается положительным, если вращение происходит таким образом, что при наблюдении вдоль оси сверху вниз угол  отсчитывается по часовой стрелке. При вращении в обратном направлении  <0. При совершении n оборотов угол  = 2n.

Зависимость  = (t) - наз. уравнением вращательного движения тела.

При вращении всего твердого тела в целом отдельные его точки движутся по окружностям, центры которых лежат на оси вращения.

Кинематические характеристики различных движущихся точек (S,V, W) связаны друг с другом и с кинематическими характеристиками движения всего тела в целом.

Рассмотрим произвольную точку М, лежащую в подвижной плоскости Р. Угол поворота всего тела  и путь S, пройденный точкой М, будем отсчитывать от плоскости Q. Если  измерять в радианах, то S и  связаны известным равенством S = r

За промежуток времени t тело повернется на  и точка М пройдет путь S = r.

Делим обе части равенства на t и перейдем к пределу

Lim S/t = r lim /t; (1)

t t

 lim/t = d/dt - угловая скорость t

1 об/мин = 2/60 (рад/с) = /30 (рад/с), Т- период обращения – время в течение которого тело поворачивается волруг неподвижной оси вращения на угол  = 2.

Из (1) следует V = r .

Угловую скорость вращения тела условились считать вектором, направление которого определяется известным правилом винта: если головку винта вращать в направлении вращения тела, то направление движения оси винта совпадает с направлением вектора угловой скорости. Очевидно, что вектор  всегда направлен || ОО в ту или другую сторону в зависимости от направления вращения. В векторном виде

V = r,

откуда V = r sin(,r) =r, т.к. sin 900 = 1.

Очевидно, что угловая скорость будет одинаковой у всех точек вращающегося тела, а линейные скорости различных точек тела по величине будут пропорциональны расстоянию их до оси вращения r.

При неравномерном вращении  изменяется и за t получает приращение ; приращение линейной скорости произвольной точки М V будет равно

V  r  r, т.к. r =соnst.

Разделив обе части этого равенства на t и переходя к пределу, получим

Lim Vt  r lim t = r d/dt = r,

t t

где  - угловое ускорение. = рад/с2

 = d/dt (d/dt) = d2/dt2

Угловое ускорение считается векторной величиной. Вектор углового ускорения направлен ||, если вращение ускоренное и , если движение замедленное.

Линейное ускорение W какой-либо точки вращающегося тела связано с угловыми характеристиками его движения.

Рис.

W = dV/dt, но V = r, тогда W = d/dt (r) = r d/dt = r. Wn = V2/r = 2r2/r = 2r. Полное ускорение точки W =  W2 + Wn2 = r 2 + 4. tg   W/Wn = r2r  /2.

При равномерном вращении твердого тела   ,   const и  = 0 + t. При равноускоренном вращении   const,  = 0 t   0 + 0t + t2/2

Часто вместо выражения вектора ускорения через три его проекции на оси координат удобнее представлять его в виде геометрической суммы двух составляющих, направленных по касательной к траектории и по нормали к траетории. Первая составляющая W - тангенциальное или касательное ускорение характеризует быстроту изменения только величины скорости, вторая Wn – наз. центростремительным или нормальным ускорением характеризует быстроту изменения скорости только по направлению.

W =W +Wn. W= dV/dt; Wn=V2/r, а

W W2 + Wn2 =  (dV/dt)2 + (V2/r)2

Для равномерного криволинейного движ. V = const, W= 0 иW=Wn.

Для неравномерного прямолинейного движения (r=) Wn=0 иW =W. Если при этом W=const, то движение равноускоренное. 1.Если острый, то tg = Wn/W > 0. Это значит, что dV/dt > 0, т.к. V2/r > 0, т.е. величина скорости возрастает с течением времени, движение равноускоренное. Если - тупойдвижение равнозамедленное.

3.СИЛЫ. МАССА. ЗАКОНЫ НЬЮТОНА.

Взаимодействие тел характеризуется физической величиной, которая называется силой. Сила является количественной мерой действия тел друг на друга, в результате которых они изменяют состояние своего движения.

Изменение состояния покоя или движения какого-либо тела всегда вызывается действием на него сил, исходящих от определенных других тел. Примеры.

Если бы на данное тело не действовали никакие силы со стороны других тел, то оно или находилось бы в неизменном состоянии покоя, или двигалось прямолинейно и равномерно. Состояние равномерного прямолинейного движения считается неизменным состоянием движения, поскольку это единственный вид движения с постоянной по величине и направлению скоростью и W = 0. Состояние покоя можно считать частным случаем равномерного прямолинейного движения, скорость которого равна 0.

Силы, как количественная мера взаимодействия тел, характ. не только своей величиной, но и направлением действия и точкой прило- жения, т.е. сила – вектор.

В механике рассматривают 1)гравитационные силы (силы тяжести), 2)силы упругие, которые действуют как между соприкасающимися телами, так и между соседними слоями одного и того же тела. Упругие силы возникают в результате деформации тел и зависят от величины деформаций, 3) силы трения, действующие на соприкасающиеся поверхностные слои тел и зависящие как от состояния поверхностей соприкосновения, так и от относительной скорости тел.

Если на материальную точку действуют две силы F1 и F2 то их действие эквивалентно действию равнодействующей силе R = F1 + F2

Рис.

Если к материальной точке приложены F1, F2, …Fn сил, то их складывают по такому же принципу.

R = Fi,

или можно построить силовой многоугольник.

рис.

Измерение сил производят путем количественного сравнения конкретных результатов их действия. Опыт показывает, что под действием одной и той же силы различные тела испытывают неодинаковые ускорения, т.е. изменение их инерциального движения различно. Мы говорим, что различна инерция этих тел. Физической величиной, характеризующей инертность материального тела, является его масса.

Ньютон определил массу как количество вещества, содержащегося в теле. Это определение нельзя считать строгим и исчерпывающим, т.к. при больших скоростях масса одного и того же тела может изменяться при движении. Но будем пока пользоваться определением Ньютона.

Масса характеризует не только инерцию материального тела, но и его гравитационные свойства.

Величину массы определяют по различным ее проявлениям (инерции, тяготению) путем сравнения с массой какого-либо эталонного тела, произвольно принятого за единицу. Единицей массы в системе СИ является эталон 1 кг.

Изучая действие сил на движение тел, был сформулирован первый закон Ньютона (Галилей): точечное тело пребывает в состоянии покоя или равномерного прямолинейного движения, пока и поскольку действие внешних сил не вынудит его изменить это состояние.

Свойство тел сохранять скорость неизменной (в частности равной нулю) при отсутствии действующих на них сил называется инертностью. Поэтому равномерное прямолинейное движение тел часто называют движением по инерции, а 1-ый зак. Ньютона - законом инерции.

Установленный Ньютоном второй закон механики указывает, каким будет характер движения точечного тела при действии на него заданных сил.

При действии сил движение тела перестает быть равномерным и прямолинейным и появляется ускорение W. Направление его совпадает с направлением F.

W  F при m = const. (1)

При действии одной и той же силы F на разные тела W этих тел оказываются различными, причем

W  1/m (2)

при F = const. Объединяя (1) и (2) получаем, что

W  F/m, или F  mW

F = kmW, но единицу силы выбирают так, что к = 1 и тогда

F = mW = mdV/dt = d/dt (mV) = dP/dt, (3)

где Р – импульс (количество движения) материальной точки.

Скорость изменения импульса материальной точки равна действующей на нее силе.

1 Н – сила, которая массе в 1 кг сообщает ускорение, равное 1 м/с2.

Сила веса 1кГ, тогда 1Н = 0,102 кГ; 1 кГ = 9,81 Н.

До сих пор мы рассматривали влияние других тел на характер движения данного выделенного тела (материальной точки). Такое влияние не может быть односторонним, взаимодействие должно быть обоюдным. Этот факт отражается третьим законом Ньютона, сформулированным для случая взаимодействия 2-х мат. точек: Если материальная точка m2 испытывает со стороны матер. точки m1 силу равную F12, то m1 испытывает со стороны m2 силу F21, равную по величине и противоположную по направлению F12.

F21 = - F12

Рис.

Эти силы действуют всегда вдоль прямой, проходящей через точки m1 и m2 .

В случае произвольно большого множества точек взаимодействие в такой системе согласно 3-му зак. сводится к парному взаимодействию между любыми двумя точками. Т.е. например, сила, испытываемая точкой m3 системы, складывается из сил, действующих со стороны точек m1, m2, m4, m5 и т.д.

F3 = F13 + F23 +F43 +F53 + …

Часто употребляется такая формулмровка 3-го закона; «действие равно противодействию» – это неполная формулировка, т.к. в ней не подчеркивается важное обстоятельство: силы действия и противодействия приложены всегда к различным телам и поэтому никогда не уравновешивают друг друга.

Пример: когда человек идет по земле, то сила, с которой он отталкивает землю назад, равна по величине и направлена обратно той силе, с которой земля отталкивает человека вперед. При равенстве этих сил, однако, согласно 2-го зак. Ньютона, возникающие ускорения обратно пропорциональны массам, и землю благодаря ее очень большой по сравнению с человеком массе можно считать практически неподвижной.