- •1. Сист. Отсчета и сист. Координат. Основные хар-ки мех. Движения. Прямолин. И криволин. Движение мат. Точки. Скорость и ускорение.
- •2.Движение материал. Точки по окружности. Нормальное и тангенц.Ускор. Связь угл. И лин. Хар-к. Движ.
- •4.Силы при криволин. Движении.
- •5. Закон всемирного тяготения. Зависимость веса тела от высоты над уровнем моря и геогр. Шир. Гравит. Поле.
- •6. Нормальное гравитационное поле земли и его анамалии
- •7. Гравитационные явления и процессы.
- •8. Орбитальное движение земли и ее осевое вращение. Неравномерности вращение земли, их физическая природа.
- •9. Приливообразующие силы и их геофизическая роль.
- •10.Закон сохранения и изменения количества движения.
- •11.Работа силы и мощность. Кинетическая и
- •2) Потенциальная энергия тела массы m, находящегося в гравитационном поле другого тела массой м на расстоянии r0 от
- •3) Определим потенциальную энергию тела массой m, находящегося на небольшой высоте h над земной поверхностью.
- •12.Гармоническое колебание и его хар-ки. Математический, физический и пружинные маятник.
- •13.Энергия колеблющегося тела. Собственные колебания земли. Сложение гармонических колебаний.
- •14.Волна, ее хар-ки. Продольные и поперечные волны. Принцип гюйгенса. Интенсивность волны.
- •15.Звуковая волна, характеристики звука. Инфразвук и ультразвук. Принцип локации.
- •16.Элементымеханики жидкостей. Основные определения. Уравнение неразравности.
- •18.Осн.Положения молекулярно-кинетической теории строен. В-ва. Межмолекулярные силы. Агрегатные состояния вещества.
- •19.Макроскопические системы. Термодинам. Равновесие. Равновесные и неравновесные процессы. Обратимые и необратимые процессы.
- •20. Газовые законы (бщйля-мариотта, гей-люсака, авогадро). Уравнение состояния идеального газа.
- •21.Барометрическая формула и распред. Больцмана.
- •22. Явление переноса в газах и жидкостях. Диффузия в газа.
- •23.Явление переноса теплопроводность.
- •24. Явление переноса в газах и жидкостях. Внутреннее трение (вязкость).
- •26. Внутренняя энергия идеального газа. Работа и теплота. Закон сохранения энергии.Первое начало термодинамики.
- •27.Электрические заряды и электрическое поле. Закон кулона. Принцип суперрозиции. Напряженость электоростатического поля
- •28.Линии напряженности электростат поля. Поток вектора напряженности. Теор. Остраградского-гаусса
- •29.Примеры вычисления напряженности электрических полей с помощью теоремы остгоградского-гаусса
- •30. Потенциал и работа сил электростатического поля. Циркуляция напряжености электростатического поля вдоль замкнутого контура. Разность потенциалов.
- •31. Градиент потенциала. Связь между потенциалом и напряженностьяю электростатического поля в каждой точке поля.
- •32.Эквипотенциальные поверхности. Изображения сечения простейших электрических полей с помощью эквопотенциальных линий. Работа при перемещении электрического заряда по эквипотенциальнойт поверхности.
- •33. Вычисление потенциалов некоторых простейших электростатических полей (создаваемых точечным зарядом, в плоском и шаровом конденсаторе)
- •1 .Потенциал электрического поля точечного заряда q.
- •3. Шаровой конденсатор.
- •34. Геоэлектрическое поле земли. Электрическая проводимость гидросферы, земной коры и недр.
- •35.Электрическая проводимость атмосферы. Ионосфера, ионные слои. Влияние ионосферы на распространение радиоволн. Нормальное электрическое поле атмосферы. Техногенное воздействие на ионосферу
- •36.Электротеллурическое поле. Региональные и локальные электрические поля земной коры. Вариации мередиональной и широтной напряженности электротеллурического поля.
- •37.Изучение глубинного строения земли с помощью сейсмического зондирования.
- •38.Масса, форма, размеры и строение атмосферы. Слои атмосферы и зависимость т атмосферы от высоты.
22. Явление переноса в газах и жидкостях. Диффузия в газа.
Беспорядочное тепловое движение молекул в газе приводит к тому, что молекулы переносятся с одного места в другое и при столкновении передают друг другу кинетическую энергию и количество движения. Этот перенос молекул и столкновения между ними обуславливают несколько процессов, которые получили название явлений переноса, в результате которых происходит пространственный перенос энергии, массы, импульса. К явлениям переноса относятся диффузия (обусловлена переносом массы), теплопроводность (обусловлена переносом энергии) и внутреннее трение (обусловлено переносом импульса силы или количества движения).
Если два различных газа привести в соприкосновение друг с другом, то тепловое движение молекул будет перемешивать их до тех пор, пока не образуется однородная смесь молекул, в которой парциальная плотность каждого газа будет одинакова во всем объеме.
Этот процесс постепенного перемешивания 2-х или большего числа газов называется диффузией. Явление диффузии наблюдается также в жидкостях и даже твердых телах. Процесс диффузии заключается в том, что каждая из компонент смеси переходит из тех частей объема, где ее порциальная плотность больше, туда, где она меньше, т.е. в направлении падения парциальной плотности.
Явление диффузии подчиняется закону Фика, который справедлив не только для газов, но и для жидкостей и твердых тел:
Jm = - D d/dx,
где Jm – плотность потока массы – величина, определяемая массой вещества, диффундирующего в единицу времени через единичную площадку, перпендикулярную направлению переноса (оси OX); D – диффузия (коэффициент диффузии); d/dx – градиент плотности (величина векторная), равный скорости изменения плотности на единицу длины Х в направлении нормали к этой площадке. Знак минус показывает, что перенос массы происходит в направлении убывания плотности (поэтому знаки Jm и d/dx противоположны).
Диффузия D численно равна плотности потока массы при градиенте плотности, равном единице.
Возникающий при наличии разности концентраций (или парциальных плотностей) диффузионный поток Jm приводит к выравниванию концентраций, т.е. к уменьшению той разности концентраций, которая вызвала этот поток. Такой процесс диффузии, в результате которого происходит выравнивание концентраций компонентов, является нестационарным процессом: при этом как градиент концентрации, так и диффузионный поток изменяются со временем.
Для того, чтобы процесс диффузии был стационарным, необходимо тем или иным путем поддерживать разность концентраций компонент смеси неизменной во времени. Для этого, например, в одной части сосуда необходимо непрерывно добавлять данный компонент, а из другой его части отбирать его в таком же количестве. При стационарной диффузии градиент концентрации остается неизменным во времени. Остается поэтому постоянным и диффузионный поток.
Рассматривая явление диффузии с точки зрения молекулярно-кинетической теории газов, можно получить выражение для коэффициента диффузии
D = V/3,
где V - средняя скорость теплового движения молекул, - средняя длина свободного пробега молекул газа.
