
- •Лекция 1
- •1. Основные понятия тмм
- •1.1. Понятие машины и механизма
- •1.2. Звенья, кинематические пары и цепи
- •1.3. Кинематическая схема механизма
- •1.4. Степень подвижности (свободы) механизма
- •1.5. Структурный анализ и синтез механизмов
- •Правила структурного анализа
- •2.3 План ускорений механизма (пум)
- •3. Силовой анализ (исследование) механизма
- •3.1 Силы, действующие на звенья механизма
- •Сопротивление материалов
- •1. Общие сведения
- •1.1. Основные понятия и определения.
- •1.2. Схематизация внешних нагрузок.
- •1.3 Схематизация элементов конструкций
- •1.4. Типы опор, реакции связей
- •1.5 Деформация тел
- •1.6. Гипотезы и допущения сопротивления материалов
- •2. Внутренние силы. Метод сечений.
- •Понятие о напряжениях.
- •3. Растяжение (сжатие).
- •3.1. Напряжение и деформация при растяжении.
- •3.2. Закон Гука при растяжении.
- •3.3. Испытание материалов на растяжение или сжатие.
- •3.4 Допускаемые напряжения и запас прочности.
- •4. Изгиб
- •4.1 Общие понятия и типы опор.
- •4.2 Изгибающие моменты и изгибающие силы. Правила знаков и эпюры изгибающих моментов.
- •4.3 Деформации и напряжения при изгибе. Закон Гука при изгибе. Условие прочности при изгибе.
- •5. Сдвиг
- •5.1 Чистый сдвиг и его особенности.
- •6. Кручение
- •6.1 Основные понятия и определения.
- •6.2 Деформации и напряжения при кручении. Закон Гука при кручении.
- •7. Расчёты на прочность деталей, работающих в условиях сложного нагружения.
- •7.1. Изгиб с кручением.
- •8. Устойчивость сжатых стержней.
- •9. Прочность деталей работающих в условиях переменных нагрузок.
- •9.1 Циклы изменения нагружения.
- •9.3 Факторы, влияющие на предел выносливости.
- •1.1 Этапы создания машин. (Стадии разработки конструкторской документации).
- •1.2 Машиностроительные материалы
- •1.3 Основные требования, предъявляемые к деталям машин
- •I Механические передачи
- •1. Блок-схема машины
- •1.1 Основные кинематические и энергетические соотношения в передаче.
- •1.2. Классификация передач механической энергии.
- •2. Зубчатые передачи
- •2.1. Классификация зп
- •8. По наличию коррекции
- •2.2. Основные кинематические и геометрические параметры цилиндрической прямозубой зп
- •2.3 Усилия в зацеплении цилиндрической прямозубой передачи.
- •2.4 Расчётные нагрузки.
- •2.5 Виды разрушений и критерии работоспособности зп
- •2.6. Расчет зубчатых цилиндрических прямозубых передач по напряжениям изгиба (проверка на отсутствие усталостного излома зубьев)
- •Расчет зубчатых цилиндрических прямозубых передач по контактнымнапряжениям (проверка на отсутствие усталостного выкрашивания поверхностей зубьев)
- •2.8. Проверка прочности зубьев при действии пиковой нагрузки
- •2.9. Расчетная схема нагружения валов цилиндрической прямозубой передачи
- •2.10. Цилиндрические косозубые передачи
- •Силы в зацеплении цилиндрической косозубой передачи
- •Расчетная схема нагружения валов цилиндрической косозубой передачи
- •2.11. Шевронные передачи
- •2.12 Зубчатые конические передачи
- •Проектный и проверочный расчет прямозубых конических передач на изгибную и контактную прочность зуба.
- •2.17 Силы в зацеплении конической передачи
- •2.13 Передачи между перекрещивающимися валами
- •Червячная передача с цилиндрическим червяком
- •Геометрические параметры червячной передачи
- •Передачи гибкой связью к передачам гибкой связью относятся ременные и цепные передачи.
- •3. Ременные передачи
- •3.1. Общие сведения
- •3.2. Силы и напряжения в ремне
- •3.3. Способы регулирования натяжения ремня
- •3.4. Порядок расчёта клиноремённой передачи.
- •3.9. Кривые скольжения. Коэффициент тяги.
- •4. Цепные передачи
- •4.1. Общие сведения.
- •Классификация цп
- •4.2. Геометрические параметры цепной передачи.
- •4.3. Проектный и проверочный расчет цепной передачи.
- •Способы регулирования натяжения цепи:
- •Способы смазки цепи.
- •5.3 Проверочный расчет валов
- •Расчёт валов и осей на усталостную прочность
- •5.4 Проектный и проверочный расчет осей
- •6. Подшипники
- •6.1. Подшипники качения
- •Выбор подшипников качения.
- •Расчёт подшипников качения по динамической грузоподъёмности (расчет на долговечность)
- •6.2. Подшипники скольжения.
- •7. Соединения
- •7.3. Резьбовые соединения
- •Неразъемные соединения
- •7.4. Сварные соединения (электродуговой сваркой)
- •1. Стыковые.
- •2. В нахлёстку. 3. Тавровое соединение.
- •7.5. Заклепочные соединения
- •8. Муфты приводов
- •8.1. Характеристика и классификация муфт
- •8.2. Глухие муфты
- •Глухие муфты (втулочные - а, б и фланцевая - г).
- •8.3. Компенсирующие муфты
- •Схемы смещения валов: а) осевое, б) радиальное, в) угловое, г) комбинированное Жесткие компенсирующие муфты
- •Муфта упругая втулочно-пальцевая
- •Муфта упругая со звездочкой
- •8.4. Управляемые муфты
- •Кулачковые и зубчатые муфты
- •Кулачковая (а) и зубчатая (б) муфты
- •Фрикционные сцепные муфты
- •Управляемая сцепная муфта
- •8.5. Самоуправляемые муфты
- •Обгонные муфты
- •Роликовая обгонная муфта
- •При определенной скорости вращения полумуфты под действием центробежных сил грузы колодки 2 преодолевают силу сжатия пружины, прижимаются к барабану ведомой обоймы, и муфта плавно включается.
Сопротивление материалов
1. Общие сведения
Любая машина или конструкция помимо элементов, обеспечивающих своё функциональное назначение, имеет несущие конструкции, обеспечивающие прочность, жесткость и устойчивость (силовой каркас).
Сопротивление материалов – является наукой о прочности, жёсткости и устойчивости элементов конструкции.
1.1. Основные понятия и определения.
Работоспособность детали – это способность выполнять заданные функции, сохраняя эксплуатационные показатели в заданных нормативных пределах.
Работоспособность зависит от свойств материала.
В курсе «сопротивление материалов» рассматриваются три критерия работоспособности:
Прочность – способность детали выдерживать внешние нагрузки без разрушения.
Жесткость – способность детали сопротивляться изменению формы и размеров под действием внешних сил.
Устойчивость – способность конструкции (стержня) сопротивляться изменению формы при осевом сжатии.
1.2. Схематизация внешних нагрузок.
Силы, действующие на тело со стороны других тел, называются внешними нагрузками:
1) Сосредоточенные силы – это силы, действующие на площадку во много раз меньшую, чем вся рассматриваемая поверхность или сила, приложенная к точке.
2)
Распределенные нагрузки.
Нагрузка,
распределённая по длине (б)
.
Для неравномерной
нагрузки задаётся закон распределения
нагрузки по длине (в)
.
Нагрузка,
распределенная по поверхности (а) (по
площади
или объёму
)
3) Изгибающий момент.
4) Крутящий момент.
1.3 Схематизация элементов конструкций
Для расчета конструкции ее упрощают, т.е. составляют расчетную схему.
Основными элементами расчетных схем являются:
1) Стержень (брус) – элемент конструкции, длина которого значительно превышает его поперечные размеры.
l >> b, h, d
2) Балка- элемент конструкции (стержень) работающий на изгиб.
3
Ткр Ткр
4) Оболочка – элемент конструкции, длина и ширина которого много больше толщины.
5) Массивное тело – элемент конструкции, размеры которых сопоставимы друг с другом.
1.4. Типы опор, реакции связей
Опоры, подвижные (а), неподвижные (б), защемление (в)
а) б) в)
а)
в шарнирно-подвижной опоре возникает
только одна составляющая реакции –
вертикальная
;
б)
в шарнирно-неподвижной опоре возникает
две составляющие реакции – вертикальная
и горизонтальная
;
в)
в защемлении возникает три составляющие
реакции – вертикальная
,
горизонтальная
и реактивный момент
.
Реакции
опор определяются уравнениями статики.
1.5 Деформация тел
Изменение формы тела или его размеров вследствие воздействия внешних сил или изменения температуры – называется деформацией.
Деформации могут быть упругие (исчезающие полностью после снятия нагрузки) и пластические (не восстанавливают форму и размеры после снятия нагрузки).
1.6. Гипотезы и допущения сопротивления материалов
Для упрощения расчетов, в сопротивлении материалов применяют ряд допущений и гипотез, полученных путём экспериментальных исследований и математического анализа.
1. Гипотеза о сплошном строении тела – предполагает, что материал полностью занимает объём тела, пустоты отсутствуют.
2. Об идеальной упругости материала: материал полностью восстанавливает свою форму и размеры после снятия нагрузки.
3. Гипотеза об однородности и изотропности материала – все частицы материала обладают одинаковыми свойствами, во всех направлениях свойства не меняются.
4. Гипотеза о плоских сечениях: сечения плоские и нормальные к оси бруса до деформации остаются такими же и после приложения нагрузки.
5. Гипотеза о малых перемещениях: перемещения или деформации малы по сравнению с размерами тела и не учитываются в расчётах на прочность.
6. Допущение о линейной зависимости сил и деформаций: деформация считается строго прямо пропорциональной приложенной нагрузке.
7. Принцип суперпозиции (принцип независимости действия сил): при действии на тело нескольких нагрузок приложенных в одной точке, они складываются друг с другом. То же самое происходит и с деформацией.