
- •Минобрнауки россии
- •Задание на магистерскую диссертацию
- •Реферат
- •Аннотация выпускной квалификационной работы
- •Характеристика вкр
- •Summary
- •Сожержание
- •Определения, обозначенияисокращения
- •Введение
- •1 Разработка концепции и аппаратная реализация проектируемого стенда
- •1.1 Обзор существующих решений
- •Лабораторный стенд «Система автоматического регулирования электродвигателей постоянного и переменного тока»
- •1.1.2. Лабораторный стенд «Исполнительный двигатель постоянного тока»
- •1.1.3. Лабораторный стенд «Исполнительный бесколлекторный двигатель постоянного тока ибдпт1-н-к»
- •1.1.4. Лабораторный стенд «Исследование двигателя и генератора постоянного тока»
- •1.1.5 Тренажер управления двигателем постоянного токаQnet dcmct
- •1.1.6 Обобщение и выбор прототипа
- •1.2 Концепция аппаратной реализации стенда и его функциональное назначение
- •1.3 Аппаратная реализация
- •1.3.1 Выбор элементной базы
- •1.3.2 Лабораторная платформа nielvisii
- •Настольная рабочая станция элвис II
- •1.3.3 Требуемое программное обеспечение Программное обеспечение ni LabView
- •Программное обеспечение ni elviSmx
- •Daq Assistant
- •Control Design Module
- •SimulationModule
- •2. Построение математической модели двигателя постоянного тока и системы тестирования
- •2.1 Математическая модель дпт
- •2.2 Расчет параметров дпт
- •2.3 Разработка системы автоматического управления
- •2.4 Разработка системы тестирования
- •2.4.1 Формирование модуля шим Общие сведения о шим
- •Цифровой синтез сигналов в системе LabView
- •Синтез сигналов с широтно-импульсной модуляцией
- •2.4.2 Формирование канала управления с помощью daqAssistant
- •Взаимодействие компьютера с устройствами сбора данных
- •Создание типового daq приложения
- •3. Программное и методическое обеспечение исследовательского стенда с дпт
- •3.1Программная реализация математической модели дпт в LabView
- •3.1.1. Формирование модели дпт с помощью цикла For
- •3.1.2. Задание модели дпт с использование передаточной функции
- •3.1.3. Реализация модели посредством структурной схемы
- •3.2. Разработка вариантов реализации измерительного канала
- •3.2.1 Внешний энкодер (тахометр)
- •3.2.2. Встроенный энкодер
- •Проектирование основного управляющего цикла
- •3. 4 Методика работы с исследовательским стендом
- •4 Понятие об электробезопасности
- •4.1 Общие понятия
- •4.2 Сети напряжением до 1кВ
- •4.3 Безопасность ni elvis II
- •4.4 Электромагнитная совместимость
- •4.5 Предохранители защитной платы
- •Заключение
- •Список использованных источников
- •Приложение 1
- •Приложение 3
2.4 Разработка системы тестирования
Для определения работоспособности двигателя постоянного тока была разработана система тестирования, с помощью которой можно запускать двигатель, а также управлять его питанием посредством ШИМ.
2.4.1 Формирование модуля шим Общие сведения о шим
Широтно-импульсная модуляция применяется в технике, как способ преобразования переменного напряжения впостоянное, с изменением его среднего значения (Ud). Управление средним значением напряжения происходит путем изменения скважности импульсов.
Скважность – это отношение одного периода, к времени действия (длительности) импульса в нем. В англоязычной литературе часто встречается понятие коэффициент заполнения, который обратно пропорционален скважности (Рисунок 2.5).
Рисунок 2.5 - Коэффициенты заполнения импульсов.
На рисунке 2.5 изображены импульсы, которые возникают с определенной периодичностью, рассмотрим первый случай. Длительность импульса равна ¼ периода Т, это означает, что коэффициент заполнения равен 25%, а скважность – 4. Аналогично все выполняется и для остальных случаев. Специфическое название имеется у второго набора импульсов, когда коэффициент заполнения – 50%, этот сигнал называется меандр.
Существуют цифровые и аналоговые ШИМ. Принцип их работы остается одинаковым вне зависимости от исполнения.
Принцип действия заключается в сравнении двух видов сигналов:
Uоп – опорное (пилообразное, треугольное) напряжение;
Uупр – входное постоянное напряжение.
Эти сигналы поступают на компаратор, где они сравниваются и при их пересечении возникает / исчезает (или становится отрицательным) сигнал на выходе ШИМ.
Выходное напряжение Uвых ШИМ имеет вид импульсов, изменяя их длительность, регулируем среднее значение напряжения (Ud) на выходе ШИМ:
Рисунок 2.6 - Однополярнаямодуляция.
На рисунке 2.6 изображена однополярная модуляция, которая означает, что происходит формирование импульсов только положительной величины и имеет место нулевое значение напряжения. Осуществить однополярную модуляцию в некоторых схемах невозможно, ее преимущество: малое амплитудное значение высокочастотных гармоник.
Преимущество использования ШИМ - это легкость изменения величины напряжения при минимальных потерях. Конечно же, можно, использовать делитель напряжения, но его работа основана на применении резисторов, а на них происходит рассеивание энергии, что в свою очередь вызывает нагрев и неэкономичность (преобразование электрической энергии в тепловую).
Работа широтно-импульсного преобразователя реализуется с помощью полупроводниковых приборов – транзисторов. Максимальные потери на транзисторах бывают в полуоткрытом их состоянии. Поэтому используют два крайних их положения: полностью открыты или закрыты, тогда потери минимальны. Частота срабатывания транзисторов очень большая, то есть переходные состояния имеют мало времени и потери, фактически, сводятся к нулю.
Изменение яркости дисплеев на мониторах, телефонах осуществляется с помощью ШИМ, так как это надежный, простой, компактный и экономичный способ регулирования постоянного напряжения.
ШИМ нашел широкое применение как регулятор оборотов двигателей постоянного тока (ДПТ) [16].