Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Учебники / Genetic Hearing Loss Willems 2004

.pdf
Скачиваний:
131
Добавлен:
07.06.2016
Размер:
3.5 Mб
Скачать

24

Mullen et al.

ACKNOWLEDGMENTS

This work was supported by grants from the U.S. National Institutes of Health/NIDCD, DC04233, DC00129 and DC00139, and by the Research Service of the U.S. Veterans Administration.

REFERENCES

1.Aghemo GF, Fortunato G. Observations on the development of the auricle in man. Panminerva Med 1969; 11:10–12.

2.Aletsee C, Beros A, Mullen L, Palacios C, Pak K, Dazert S, Ryan AF. Ras/ MEK but not p38 signaling mediates neurite extension from spiral ganglion neurons. JARO 2001; 2:377–387.

3.Aletsee C, Beros A, Mullen L, Palacios S, Pak K, Dazert S, Ryan AF. The disintegrin kistrin inhibits neurite extension from spiral ganglion explants cultured on laminin. Audiol Neuro Otol 2001; 6:66–78.

4.Anniko M, Wikstrom SO. Pattern formation of the otic placode and morphogenesis of the otocyst. Am J Otolaryngol 1984; 5:373–381.

5.Anniko M, Wroblewski R, Wersall J. Development of endolymph during maturation of the inner ear: a preliminary report. Arch Otorhinolaryngol 1979; 225:133–161.

6.Anniko M, Wroblewski R. Ionic environment of cochlear hair cells. Hearing Res 1986; 22:279–293.

7.Anson B. The early relation of the auditory vesicle to the ectoderm in human embryos. Anat Rec 1934; 58:127–137.

8.Anson B, Bast T. The development of the auditory ossicles and associated structures in man. Ann Otol Rhinol Laryngol 1946; 55:467–493.

9.Anson B, Donaldson J. Surgical Anatomy of the Temporal Bone and Ear. Philadelphia: WB Saunders, 1973.

10.Anson B, Hanson J, Richany S. Early embryology of the auditory ossicles and associated structures in relation to certain anomolies observed clinically. Ann Otol Rhinol Laryngol 1960; 69:427–447.

11.Arnold WH, Lang T. Development of the membranous labyrinth of human embryos and fetuses using computer aided 3D-reconstruction. Ann Anat 2001; 183:61–66.

12.Axelsson A, Ryan AF, Woolf N. The early postnatal development of the cochlear vasculature in the mongolian gerbil. Acta Otolaryngol 1986; 101:75– 87.

13.Bast TH. Ossification of capsule in human fetus. Carnegie Contrib Embryol 1930; 21:53–82.

14.Belyantseva IA, Adler HJ, Curi R, Frolenkov GI, Kachar B. Expression and localization of prestin and the sugar transporter GLUT-5 during development of electromotility in cochlear outer hair cells. J Neurosci 2000; 20:RC116.

Development of the Ear

25

15.Bermingham N, Hassan B, Price S, Vollrath M, Ben-Arie N, Eatock R, Bellen H, Lysakowski A, Zoghbi H. Math1: an essential gene for the generation of inner ear hair cells. Science 1999; 284:1837–1841.

16.Birnholz JC. The fetal external ear. Radiol 1983; 147:819–821.

17.Brigande J, Kiernan A, Gao X, Iten L, Fekete D. Molecular genetics of pattern formation in the inner ear: do compartment boundaries play a role? PNAS 2000; 97:11700–11706.

18.Brook W, Diaz-Benjumea F, Cohen S. Organizing spatial pattern in limb development. Annu Rev Cell Dev Biol 1996; 12:161–180.

19.Bock G, Steel KP. Inner ear pathology in the deafness mutant mouse. Acta Otolaryngol 1983; 96:39–47.

20.Bosher S, Warren R. A study of the electrochemistry and osmotic relationship of the cochlear fluids in the neonatal rat at the time of development of the endocochlear potential. J Physiol 1971; 212:739–761.

21.Bylander A, Tjernstrom O. Changes in Eustachian tube function with age in children with normal ears: a longitudinal study. Acta Otolaryngol 1983; 96:467– 477.

22.Cable J, Jackson IJ, Steel KP. Mutations at the W locus a ect survival of neural crest-derived melanocytes in the mouse. Mech Dev 1995; 50:139–150.

23.Chang W, Nunes FD, De Jesus-Escobar JM, Harland R, Wu DK. Ectopic noggin blocks sensory and nonsensory organ morphogenesis in the chicken inner ear. Dev Biol 1999; 216:369–381.

24.Chun YM, Park K, Lim DJ. Development and resorption of murine middle ear mesenchyme. In: Mogi G, Honjo I, Ishii T, Takasaka T, eds. Recent Advances in Otitis Media. Amsterdam: Kugler, 1993:381–387.

25.Kil SH, Collazo A. Origins of inner ear sensory organs revealed by fate map and time-lapse analyses. Dev Biol 2001; 233:365–379.

26.Dazert S, Aletsee C, Brors D, Gravel C, Sendtner M, Ryan AF. In vivo adenoviral transduction of the neonatal rat cochlea and middle ear. Hearing Res 2001; 151:30–40.

27.Dazert S, Kim D, Luo L, Aletsee C, Garfunkel S, Maciag T, Baird A, Ryan AF. Focal delivery of fibroblast growth factor-1 by transfected cells induces spiral ganglion neurite targeting in vitro. J Cell Physiol 1998; 177: 123–129.

28.Dechesne CJ, Pujol R. Neuron-specific enolase immunoreactivity in the developing mouse cochlea. Hearing Res 1986; 21:87–90.

29.Declau F, Moeneclaey L, Marquet J. Normal growth pattern of the middle ear cleft in the human fetus. J Laryngol Otol 1989; 103:461–465.

30.Dulon D, Luo L, Zhang C, Ryan AF. Expression of small-conductance calcium-activated potassium channels (SK) in outer hair cells of the rat cochlea. Eur J Neurosci 1998; 10:907–915.

31.Echelard Y, Epstein D, St-Jacques B, Shen L, Mohler J, McMahon J, McMahon A. Sonic hendgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 1993; 75:1417– 1430.

26

Mullen et al.

32.Echteler S, Arjmand E, Dallos P. Developmental alterations in the frequency map of the mammalian cochlea. Nature 1989; 341:147–149.

33.Echteler SM. Developmental segregation in the a erent projections to mammalian auditory hair cells. Proc Natl Acad Sci USA 1992; 89:6324–6327.

34.Erkman L, McEvilly RJ, Luo L, Ryan AE, Hoosmand F, O’Connell SM, Keithley EM, Rappaport DH, Ryan AF, Rosenfeld MG. Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 1996; 381:603–606.

35.Fekete D. Cell fate specification in the inner ear. Curr Opin Neurobiol 1996; 6:533–541.

36.Frenz DA, Doan TM, Liu W. Regulation of chondrogenesis in the developing inner ear: a role for sonic hedgehog. Ann NY Acad Sci 1998; 857:252–255.

37.Frenz DA, McPhee J, Van De Water T. Structural and functional development of the ear. In: Jahn A, Santos-Sacchi J, eds. Physiology of the Ear. 2d ed. New York: Raven Press, 2001:191–214.

38.Fritzsch B, Beisel K. Development and maintenance of ear innervation and function: lessons from mutations in mouse and man. Am J Hum Genet 1998; 63:1263–1270.

39.Furuta H, Luo L, Hepler K, Ryan AF. Evidence for di erential regulation of calcium by outer versus inner hair cells: plasma membrane Ca-ATPase gene expression. Hearing Res 1998; 123:10–26.

40.Gavalas A, Studer M, Lumsden A, Rijli FM, Krumlauf R, Chambon P. Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 1998; 125:1123–1136.

41.Gerhardt H, Otto H. The intratemporal course of the facial nerve and its influence on the development of the ossicular chain. Acta Otolaryngol 1981; 91:567–573.

42.Groves AK, Bronner-Fraser M. Competence, specification and commitment in otic placode induction. Development 2000; 127:3489–3499.

43.Gulya J. Anatomy and ebryology of the ear. In: Hughes G, Penshak M, eds. Clinical Otology. 2d ed. New York: Thieme, 1997:3–34.

44.Hall JW. Development of the ear and hearing. J Perinatol 2000; 20:S12–S20.

45.Harvey D, Steel KP. The development and interpretation of the summating potential response. Hearing Res 1992; 61:137–146.

46.He D, Evans B, Dallos P. First appearance and development of electromotility in neonatal gerbil outer hair cells. Hearing Res 1994; 78:77–90.

47.Hepper PG, Shahidullah BS. Development of fetal hearing. Arch Dis Child 1994; 71:F81–F87.

48.Housley G, Luo L, Ryan AF. Localization of mRNA encoding the P2X2 receptor subunit of the adenosine 5V-triphosphate-gated ion channel in the adult and developing rat inner ear by in situ hybridization. J Comp Neurol 1998; 393:403–414.

49.Ikui A, Sando I, Haginomori S, Sudo M. Postnatal development of the tympanic cavity: a computer-aided reconstruction and measurement study. Acta Otolaryngol 2000; 120:375–379.

Development of the Ear

27

50.Kanagasuntheram R. A note on the development of the tubotympanic recess in the human embryo. J Anat 1967; 101:731–741.

51.Kanzaki S, Kawamoto K, Oh SH, Stover T, Suzuki M, Ishimoto S, Yagi M, Miller JM, Lomax MI, Raphael Y. From gene identification to gene therapy. Audiol Neurootol 2002; 7:161–164.

52.Kaufman MH. The Atlas of Mouse Development. New York: Academic Press, 1992.

53.Kaufman MH, Bard JBL. The Anatomical Basis of Mouse Development. San Diego, CA: Academic Press, 1999.

54.Kelly M, Bianchi L. Development and neuronal innervation of the organ of Corti. In: Willott J, ed. Handbook of Mouse Auditory Research. New York: CRC Press, 2001:137–156.

55.Khan KM, Marovitz WF. DNA content, mitotic activity, and incorporation of tritiated thymidine in the developing inner ear of the rat. Anat Rec 1982; 202:501–509.

56.Kimmel R, Turnbull D, Blanquet V, Wurst W, Loomis C, Joyner A. Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation. Genes Dev 2000; 14:1377–1389.

57.Kim DW, Aletsee C, Mullen L, Dazert S, Ryan AF. Fibronectin enhances spiral ganglion neurite outgrowth in vitro. Hearing Res 2002. In press.

58.Kitajiri M, Sando I, Takahara T. Postnatal development of the eustachian tube and its surrounding structures: preliminary study. Ann Otol Rhinol Laryngol 1987; 96:191–198.

59.Ladher RK, Anakwe KU, Gurney AL, Schoenwolf GC, Francis-West PH. Identification of synergistic signals initiating inner ear development. Science 2000; 290:1904–1905.

60.Lanford PJ, Lan Y, Jiang R, Lindsell C, Weinmaster G, Gridley T, Kelley MW. Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat Genet 1999; 21:289–292.

61.Lary S, Braissoulis G, de Vries L, Dubowitz L, Dubowitz V. Hearing threshold in preterm and term infants by auditory brainstem response. J Pediatr 1985; 107:593–599.

62.Laufer E, Dahn R, Orozco O, Yeo C, Pisenti J, Henrique D, Abbot U, Fallon J, Tabin C. Expression of radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature 1997; 386:366–373.

63.Lavigne-Rebillard M, Pujol R. Development of the auditory hair cell surface in human fetuses: a scanning electron microscopy study. Anat Embryol 1986; 174:369–377.

64.Lim DJ, Anniko M. Developmental morphology of the mouse inner ear: a scanning electron microscopic observation. Acta Otolaryngol Suppl 1985; 422: 1–69.

65.Luo L, Bennett T, Jung HH, Ryan AF. Developmental expression of 9- acetylcholine receptor mRNA in the rat cochlea and vestibular inner ear. J Comp Neurol 1998; 393:320–331.

66.Luo L, Brumm D, Ryan AF. Distribution of non-NMDA glutamate recep-

28

Mullen et al.

tor mRNAs in the developing rat cochlea. J Comp Neurol 1995; 361:372– 382.

67.Luo L, Koutnouyan H, Baird A, Ryan AF. Expression of mRNA encoding acidic and basic FGF in the adult and developing cochlea. Hearing Res 1993; 69:182–193.

68.Mansour SL, Goddard JM, Capecchi MR. Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and ear. Development 1993; 117:13–28.

69.Maroon H, Walshe J, Mahmood R, Kiefer P, Dickson C, Mason I. Fgf3 and Fgf8 are required together for formation of the otic placode and vesicle. Development 2002; 29:2099–2108.

70.Masuda Y, Honjo H, Naito M, Ogura Y. Normal development of the middle ear in the mouse: a light microscopic study of serial sections. Acta Med Okayama 1986; 40:201–207.

71.McEvilly R, Erkman L, Luo L, Sawchenko P, Ryan AF, Rosenfeld MG. Requirement for Brn-3.0 in di erentiation and survival of sensory and motor neurons. Nature 1996; 384:574–577.

72.Meinhardt H. A boundary model for pattern formation in vertebrate limbs. J Embryol Exp Morph 1983; 76:115–137.

73.Moore J, Linthicum F. Myelination of the human auditory nerve: di erent tine courses for Schwann cell and glial myelin. Ann Otol Rhinol Laryngol 2001; 110:655–661.

74.Morishita H, Makishima T, Kaneko C, Lee YS, Segil N, Takahashi K, Kuraoka A, Nakagawa T, Nabekura J, Nakayama K, Nakayama KI. Deafness due to degeneration of cochlear neurons in caspase-3-deficient mice. Biochem Biophys Res Commun 2001; 284:142–149.

75.Morlet T, Goforth L, Hood LJ, Ferber C, Duclaux R, Berlin CI. Development of human cochlear active mechanism asymmetry: involvement of the medial olivocochlear system? Hearing Res 1999; 134:153–162.

76.Morsli H, Choo D, Ryan AF, Johnson R, Wu DK. Development of the mouse inner ear and origin of its sensory organs. J Neurosci 1998; 18:3327– 3335.

77.Mullen LM, Ryan AF. Transgenic mice: genome manipulation and induced mutations. In: Willott J, ed. Handbook of Mouse Auditory Research: From Molecular Biology to Behavior. New York: CRC Press, 2001:457–474.

78.Ng J, Tamura K, Buscher D, Izpisua-Belmonte J. Molecular and cellular basis of pattern formation during vertebrate limb formation. Curr Top Dev Biol 1999; 41:37–66.

79.Nishikori T, Hatta T, Kawauchi H, Otani H. Apoptosis during inner ear development in human and mouse embryos: an analysis by computer-assisted three-dimensional reconstruction. Anat Embryol 1999; 200:19–26.

80.Nishimura Y, Kumoi T. The embryonic development of the human external auditory meatus. Acta Otolaryngol 1992; 112:496–503.

81.Nishizaki K, Anniko M. Developmental morphology of the middle ear. Auris Nasus Larynx 1997; 24:31–38.

Development of the Ear

29

82.Olszewski J. The morphometry of the ear ossicles in humans during development. Anat Anz 1990; 171:187–191.

83.O’Rahilly R. Early human development and the chief source of information on staged human embryos. Eur J Obstet Gynecol Reprod Biol 1979; 9:273– 280.

84.O’Rahilly R. The early development of the otic vesicle in staged human embryos. J Embryol Exp Morphol 1963; 11:741–755.

85.O’Rahilly R, Gardner E. The initial appearance of ossification in staged human embryos. Am J Anat 1972; 134:291–301.

86.O’Rahilly R, Muller F. Development of the human ear. In: Ballenger J, Snow J, eds. Otorhinolaryngology: Head and Neck Surgery. Baltimore: Williams & Wilkins, 1996:829–837.

87.Park K, Lim DJ. Luminal development of the eustachian tube and middle ear: murine model. Yonsei Med J 1992; 33:159–167.

88.Peck JE. Development of hearing. Part II. Embryology. J Am Acad Audiol

1994; 5:359–365.

¨

89. Pellnitz D. Uber das Wchstum der menschlichen Ohrmusckel. Arch Ohr-Nas- Kehlk-Heilk 1958; 171:334–340.

90. Petit C, Levilliers J, Hardelin JP. Molecular genetics of hearing loss. Annu Rev Genet 2001; 35:589–645.

91. Petit C. Genes responsible for human hereditary deafness: symphony of a thousand. Nature Genet 1996; 14:385–391.

92. Pujol R, Lavigne-Rebillard M. Early stages of innervation and sensory cell di erentiation in the human fetal organ of Corti. Acta Otolaryngol 1985; Suppl. 423:43–50.

93. Pujol R. Morphology, synaptology and electrophysiology of the developing cochlea. Acta Otolaryngol 1985; Suppl. 421:5–9.

94. Pujol R, Hilding D. Anatomy and physiology of the onset of auditory function. Acta Otolaryngol 1973; 76:1–11.

95. Pujol R, Lavigne-Rebillard M. Early stages of innervation and sensory cell di erentiation in the human fetal organ of Corti. Acta Otolaryngol 1985; Suppl. 423:43–50.

96. Represa J, Leon Y, Miner C, Goraldez F. The int-2 proto-oncogene is responsible for induction of the inner ear. Nature 1991; 353:561–563.

97. Retzius G. Das Geho¨rorgan der Wirbeltiere. II. Das Geho¨rorgan der Reptilien, der Vo¨gel und Sa¨ugetiere. Stockholm: Samson & Wallin, 1884.

98. Roberts DS, Miller SA. Apoptosis in cavitation of middle ear space. Anat Rec 1998; 251:286–289.

99. Ruben RJ. Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol 1967; 220:1–44.

100. Ryan AF, Woolf N. Development of tonotopic representation in the central auditory system of the mongolian gerbil: a 2-deoxyglucose study. Dev Brain Res 1988; 41:61–70.

101. Ryan AF. Transcription factors and the control of inner ear development. Semin Cell Dev Biol 1997; 8:249–256.

30

Mullen et al.

102.Sadanaga M, Morimitsu T. Development of endocochlear potential and its negative component in mouse cochlea. Hearing Res 1995; 89:155–161.

103.Sanchez Del Rey A, Sanchez Fernandez JM, Martinez Ibarguen A, Santaolalla Montoya F. Morphologic and morphometric study of human spiral ganglion development. Acta Otolaryngol 1995; 115:211–217.

104.Sher AE. The embryonic and postnatal development of the inner ear of the mouse. Acta Otolaryngol 1971; Suppl. 285:1–777.

105.Shnerson A, Devigne C, Pujol R. Age-related changes in the C57BL/6J mouse cochlea. II. Ultrastructural findings. Brain Res 1981; 254:77–88.

106.Sobkowicz HM, Rose JE, Scott GE, Slapnick SM. Ribbon synapses in the developing intact and cultured organ of Corti in the mouse. J Neurosci 1982; 2:942–957.

107.Sobkowicz HM, Rose JE, Scott GL, Levenick CV. Distribution of synaptic ribbons in the developing organ of Corti. J Neurocytol 1986; 15:693–714.

108.Sohmer H, Perez R, Sichel JY, Priner R, Freeman S. The pathway enabling external sounds to reach and excite the fetal inner ear. Audiol Neuro-Otol 2001; 6:109–116.

109.Steel KP, Barkway C. Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear. Development 1989; 107:453–463.

110.Steel KP, Harvey D. Development of auditory function in mutant mice. In: Romand R, ed. Development of Auditory and Vestibular Systems. Vol. 2 Amsterdam: Elsevier, 1992:221–242.

111.Swarts JD, Rood SR, Doyle WJ. Fetal development of the auditory tube and paratubal musculature. Cleft Palate J 1986; 23:289–311.

112.Tekin M, Arnos KS, Pandya A. Advances in hereditary deafness. Lancet 2001; 358:1082–1090.

113.Tellier AL, Amiel J, Delezoide AL, Audollent S, Auge´J, Esnault D, EnchaRazavi F, Munnich A, Lyonnet S, Vekemans M, Attie´-Bitach T. Expression of the PAX2 gene in human embryos and exclusion in the CHARGE syndrome. Am J Med Genet 2001; 93:85–88.

114.Terzic J, Muller C, Gajovic S, Saraga-Babic M. Expression of PAX2 gene during human development. Int J Devel Biol 1998; 42:701–707.

115.Theiler K. The House Mouse; development and normal stages from fertilization to 4 weeks of age. New York: Springer-Verlag, 1972.

116.Tickel C, Munsterberg A. Vertebrate limb development—the early stages in chick and mouse. Curr Opin Genet Dev 2001; 11:478–481.

117.Ulatowska-Blaszyk K, Bruska M. The cochlear ganglion in human embryos of developmental stages 18 and 19. Folia Morphol 1999; 58:29–35.

118.Vahava O, Morell R, Lynch E, Weiss S, Kagan M, Ahituv N, Morrow J, Lee M, Skvorak A, Morton C, Blumenfeld A, Frydman M, Friedman T, King M, Avraham K. Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in humans. Science 1998; 279:1950–1954.

119.Vega JA, Jose´IS, Cabo R, Rodriguez S, Represa J. Trks and p75 genes are di erentially expressed in the inner ear of human embryos: what may Trks and

Development of the Ear

31

p75 null mutant mice suggest on human development? Neurosci Lett 1999; 272:103–106.

120.Vendrell V, Carnicero E, Giraldez F, Alonso MT, Schimmang T. Induction of inner ear fate by FGF3. Development 2000; 127:2011–2019.

121.Wayne S, Robertson NG, DeClau F, Chen N, Verhoeven K, Prasad S, Morton CC, Ryan AF, Van Camp G, Smith R. Mutations in the transciptional activator Eya4 cause late-onset deafness at the DFNA10 locus. Hum Mol Genet 2001; 10:195–200.

122.Wong ML. Embryology and developmental anatomy of the ear. In: Bluestone C, Stool S, eds. Pediatric Otolaryngology. Philadelphia: WB Saunders, 1983: 85–111.

123.Woolf N, Harris J, Ryan AF. Development of the endocochlear potential in the gerbil: e ects of anoxia. Amer J Physiol 1986; 250:493–498.

124.Woolf N, Koehrn FJ, Ryan AF. Expression of fibronectin in the developing inner ear of the gerbil and rat. Dev Brain Res 1992; 65:21–33.

125.Woolf N, Ryan AF. Contributions of the middle ear to the development of function in the cochlea. Hearing Res 1988; 35:131–142.

126.Woolf N, Ryan AF. The development of auditory function in the cochlea of the mongolian gerbil. Hearing Res 1984; 13:277–283.

127.Wright CG. Development of the human external ear. J Am Acad Audiol 1997; 8:379–382.

128.Xia A, Kikuchi T, Hozawa K, Katori Y, Takasaka T. Expression of connexin 26 and Na,K-ATPase in the developing mouse cochlear lateral wall: functional implications. Brain Res 1999; 846:106–111.

129.Xiang M, Gao WQ, Hasson T, Shin JJ. Requirement for Brn-3c in maturation and survival, but not in fate determination of inner ear hair cells. Development 1998; 125:3935–3946.

130.Yamasaki M, Komune S, Shimozono M, Matsuda K, Haruta A. Development of monovalent ions in the endolymph in mouse cochlea. ORL J Otorhinolaryngol Relat Spec 2000; 62:241–246.

131.Yamashita H, Takahashi M, Bagger-Sjo¨ba¨ck D. Expression of epidermal growth factor, epidermal growth factor receptor and transforming growth factor-alpha in the human fetal inner ear. Eur Arch Oto-rhino-laryngol 1996; 253:494–497.

132.Yokoyama T, Iino Y, Kakizaki K, Murakami Y. Human temporal bone study on the postnatal ossification process of auditory ossicles. Laryngoscope 1999; 109:927–930.

2

Audiometric Tests and Diagnostic Workup

Paul J. Govaerts

The Eargroup, Antwerp, Belgium

Children with suspected congenital hearing loss are referred for audiological and diagnostic workup. The suspicion is often based on parental anxiety, but more and more children are referred after failing neonatal hearing screening.

The audiological workup aims at establishing the type and degree of hearing loss. Pure tone audiometry is the standard test in daily clinical practice. The technique of pure tone audiometry is explained and some issues that are useful for a good interpretation of audiometric reports are highlighted. Standards are given for age-related deterioration of hearing. In addition, attention is paid to objective tests, such as auditory brainstem responses (ABR), otoacoustic emissions, and tympanometry. These tests play an important role in assessing the hearing of infants or otherwise uncooperative subjects.

The diagnostic workup of hearing loss also aims at refining the diagnosis, excluding associated pathology in case of syndromic hearing loss, and identifying the molecular defect. To exclude associated pathology means looking for syndromes. Typical features such as facial anomalies may be indicative of a syndrome. A thorough clinical examination focusing on any signs of an underlying syndrome is therefore mandatory. In addition, several organs are known to be at risk in case of a congenital hearing problem. These are mainly the kidneys [e.g., branchio-oto-renal syndrome (BOR)], the heart (e.g., long Q-T syndrome), the thyroid (e.g., Pendred syndrome), and the eyes (e.g., Usher syndrome). Special attention should therefore be given to these organs.

33