Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Учебники / Auditory Trauma, Protection, and Repair Fay 2008

.pdf
Скачиваний:
200
Добавлен:
07.06.2016
Размер:
2.35 Mб
Скачать

210 D. Henderson, B. Hu, and E. Bielefeld

Figure 7.16. Organ of Corti from noise-exposed cochleae. Top is labeled for caspase-8, the bottom for caspase-9.

evidence that calcium homeostasis is central in OHC response to traumatic noise. Vicente-Torres and Schacht (2006) reported increased levels of phosphatase calcineurin and Bcl-xL/Bcl-2-associated death promoter (BAD) following noise exposure. Local application of FK506 and cyclosporin A, calcineurin inhibiting agents, provided significant protection from noise (Minami et al. 2004).

7. Noise-Induced Cochlear Pathology

211

The course of apoptosis has a short latency. Fifteen minutes after a 1-h noise exposure hair cells were already missing and other cells showed both apoptosis and necrotic-like changes (Hu et al. 2002). Given the 1-h period of the exposure, it is difficult to say when apoptosis begins. To better define the latency of the cell death, the noise exposure was changed to a 1-min series of impulses at 155 dB peak SPL. Cochleae were evaluated at 5 min and 30 min after the exposure. Interestingly, at 5 min after the exposure, there was a small lesion consisting of only apoptotic cells, but at 30 minutes, the size of the lesion expanded and both apoptotic and necrotic cells were found (Fig. 7.17). The necrotic cells may have been cells that begin to die by apoptosis, but convert to necrosis because of a lack of energy to finish the active apoptosis process.

It is clear that the extent of the OHC lesion continues to expand for days after the exposure (Hu et al. 2002; Yang et al. 2004). The direction of expansion is primarily from the center of the lesion toward the basal end of the cochlea and the mechanism driving the expansion is apoptosis, likely to be driven by lipid peroxidation (Yamashita et al. 2004) because lipid peroxidation is self perpetuating (Halliwell and Gutteridge 1999).

12. Cell Death and Impulse Noise

Impulse noise from gunfire, explosions, and so forth generate peak levels of 150 dB SPL or greater. Figure 7.9 illustrates an extreme reaction to such an exposure. There can be much less dramatic examples of mechanical damage. Exposure to impulse noise produces a proliferation of ROS similar to exposure to continuous noise (i.e., concentration at the base of OHCs and neural plexus under IHCs (see Fig. 7.12). Some pathological changes are characteristic of impulse noise, such as disassociation of the OHCs from their supporting Deiters cup (Fig. 7.9). Notice several changes: the OHC has shortened in length and its diameter is larger; the nucleus has migrated from the basal pole to the middle of the cell and, most importantly, the nucleus has shrunk. This may be an example of anoikis, a form of apoptosis where the triggering signal is a loss of attachment to the extracellular matrix. Using the same exposure, the chinchilla’s cochlea expresses p53, a tumor suppressor gene that regulates the cellular response to DNA damage by mediating cell cycle arrest, DNA repair, and cell death (Ko and Prives 1996). The mechanisms involved in p53-mediated cell death remain controversial, and regulation of p53 function is complicated. However, DNA damage and cell stress events including oxidative stress (from ROS) are known to activate p53 (Finkel and Holbrook 2000).

13. Cochlear Responses to Stress from Noise

The cochlea has several lines of defense against stresses from high level noise. At a general body systems level, the auditory system responds to high level noise by triggering both the acoustic middle ear reflex (Henderson 1993; Quaranta

212 D. Henderson, B. Hu, and E. Bielefeld

Figure 7.17. Top view shows propidium iodide labeled organ of Corti 5 min after noise exposure. Note the number of early apoptotic cells. Middle view shows the same area in a cochlea analyzed 30 min after exposure. Note the presence of both apoptotic and necrotic cells. Bottom view shows an organ of Corti colabeled with propidium iodide and caspase-3. Only shrunken nuclei (apoptotic cells) are labeled for caspase-3.

7. Noise-Induced Cochlear Pathology

213

et al. 1998) and activating the medial olivary system (Rajan and Johnstone 1983; Reiter and Liberman 1995; Rajan 1996; Zheng et al. 1997a). At the level of the organ of Corti, the ear can respond with the expression of cell survival factors, such as heat shock proteins (Yoshida et al. 1999) or bcl-2 (Niu et al. 2003). The ear can also increase the activity of the protective antioxidant system, as demonstrated in a study by Jacono et al. (1998). In the study, chinchillas were exposed to one of three conditions: a conditioning exposure of a 500-Hz octave band of noise for 6 h per day for 10 days, the conditioning exposure plus a 2-day rest period and then a high level noise exposure of 4 h duration, or only the 4-h high level exposure. Interestingly, all three exposures led to increases in the concentration of the antioxidant enzymes catalase, glutathione reductase, and-glutamyl cysteine synthetase in both stria vascularis and the organ of Corti. However, the largest increase in each of the three antioxidant enzymes was in the group that had both the conditioning exposure and the traumatic exposure. It can be argued that the conditioning effects in which the prior prophylactic exposure to moderate noise levels rendered the cochlear antioxidant system more effective. The Jacono et al. (1998) study is a key link in developing pharmacological approaches to protecting the ear from noise. More on protection is found in Green, Altschuler, and Miller, Chapter 10).

14. Summary

Noise causes damage throughout the cochlea but for hearing losses up to about 50 dB the sensory targets are primarily the OHCs, especially in the basal third of the cochlea. Noise causes this damage by creating a large increase in toxic ROS, which in turn initiates cell death by both necrosis and apoptosis. The cell death process continues, primarily by apoptosis, for days after a traumatic noise exposure, albeit at a progressively decreasing rate.

A better understanding of the parameters of cell death (i.e., triggers for the initiation of apoptosis, the driving force behind prolonged cell death after an exposure, factors that influence apoptosis versus necrosis) are interesting issues from a scientific perspective and are already providing direction for the eventual development of drugs for prevention and treatment of acquired hearing loss.

References

Beauchamp C, Fridovich I (1970) A mechanism for the production of ethylene from methional. The generation of the hydroxyl radical by xanthine oxidase. J Biol Chem 245:4641–4646.

Bielefeld EC, Hu BH, Harris KC, Henderson D (2005) Damage and threshold shift resulting from cochlear exposure to Paraquat-generated superoxide. Hear Res 207: 35–42.

Bohne BA (1976) Mechanisms of noise damage in the inner ear. In: Henderson D, Hamernik RP, Dosanjh D, Mills, J (eds) Effects of Noise on Hearing. New York: Raven Press, pp. 41–68.

214 D. Henderson, B. Hu, and E. Bielefeld

Bohne BA, Clark WW (1982) Growth of hearing loss and cochlear lesion with increasing duration of noise exposure. In: Hamernik RP, Henderson D, Salvi RJ (eds) New Perspectives on Noise-Induced Hearing Loss. New York: Raven Press, pp. 283–302.

Borg E (1982) Protective value of sympathectomy of the ear in noise. Acta Physiol Scand 115:281–282.

Brownell WE (1984) Microscopic observation of cochlear hair cell motility. Scan Electron Microsc(Pt 3):1401–1406.

Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605.

Chen GD, Fechter LD (1999) Potentiation of octave-band noise induced auditory impairment by carbon monoxide. Hear Res 132:149–159.

Cody AR, Russell IJ (1985) Outer hair cells in the mammalian cochlea and noise-induced hearing loss. Nature 315:662–665.

Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326 (Pt 1):1–16. Davis H (1952) Neuroanatomy and neurophysiology in the cochlea. Trans Am Acad

Ophthalmol Otolaryngol 56:630–634.

Davis H, Morgan CT, Hawkins JE Jr, Galambos R, Smith FW (1950) Temporary deafness following exposure to loud tones and noise. Acta Otolaryngol Suppl 88:1–56.

Fessenden JD, Schacht J (1998) The nitric oxide/cyclic GMP pathway: a potential major regulator of cochlear physiology. Hear Res 118:168–176.

Finkel T, Holbrook, NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247.

Halliwell, B, Gutteridge J (1999) Free Radicals in Biology and Disease. Oxford: Oxford University Press.

Hamernik RP, Turrentine G, Roberto M, Salvi R, Henderson D (1984) Anatomical correlates of impulse noise-induced mechanical damage in the cochlea. Hear Res 13:229–247.

Hamernik RP, Turrentine G, Roberto M (1985) Mechanically induced morphological changes in organ of Corti. In Salvi RJ, Henderson D, Hamernik RP, Colletti, V (eds) Basic and Applied Aspects of Noise Induced Hearing Loss. New York: Plenum Press, pp. 69–84.

Henderson D, Hamernik RP (1986) Impulse noise: critical review. J Acoust Soc Am 80:569–584.

Henderson D, Subramaniam M, Gratton MA, Saunders SS (1991) Impact noise: the importance of level, duration, and repetition rate. J Acoust Soc Am 89:1350–1357.

Henderson D, Subramaniam M, Boettcher FA (1993) Individual susceptibility to noiseinduced hearing loss: an old topic revisited. Ear Hear 14:152–168.

Henderson D, Bielefeld EC, Harris KC, Hu BH (2006) The role of oxidative stress in noise-induced hearing loss. Ear Hear 27:1–19.

Hildesheimer M, Sharon R, Muchnik C, Sahartov E, Rubinstein M (1991) The effect of bilateral sympathectomy on noise induced temporary threshold shift. Hear Res 51: 49–53.

Hildesheimer M, Henkin Y, Pye A, Heled S, Sahartov E, Shabtai EL, Muchnik C (2002) Bilateral superior cervical sympathectomy and noise-induced, permanent threshold shift in guinea pigs. Hear Res 163:46–52.

Hu BH, Henderson D, Nicotera TM (2002) Involvement of apoptosis in progression of cochlear lesion following exposure to intense noise. Hear Res 166:62–71.

Hudspeth AJ, Jacobs R (1979) Stereocilia mediate transduction in vertebrate hair cells (auditory system/cilium/vestibular system). Proc Natl Acad Sci USA 76:1506–1509.

7. Noise-Induced Cochlear Pathology

215

Jacono AA, Hu B, Kopke RD, Henderson D, Van De Water TR, Steinman HM (1998) Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla. Hear Res 117:31–38.

Kallinen J, Didier A, Miller JM, Nuttall A, Grenman R (1991) The effect of CO2and O2-gas mixtures on laser Doppler measured cochlear and skin blood flow in guinea pigs. Hear Res 55:255–262.

Kandel ER, Schwartz JH, Jessell TM (2000) Principles of Neural Science, 4th ed. New York: McGraw-Hill Health Professions Division.

Ko LJ, Prives C (1996) p53: puzzle and paradigm. Genes Dev 10:1054–1072.

Konishi K, Yamane H, Iguchi H, Takayama M, Nakagawa T, Sunami K , Nakai Y (1998) Local substances regulating cochlear blood flow. Acta Otolaryngol Suppl 538:40–46.

Lamm K, Arnold W (2000) The effect of blood flow promoting drugs on cochlear blood flow, perilymphatic pO(2) and auditory function in the normal and noise-damaged hypoxic and ischemic guinea pig inner ear. Hear Res 141:199–219.

Laurikainen EA, Kim D, Didier A, Ren T, Miller JM, Quirk WS, Nuttall, AL (1993) Stellate ganglion drives sympathetic regulation of cochlear blood flow. Hear Res 64:199–204.

Laurikainen EA, Costa O, Miller JM, Nuttall AL, Ren TY, Masta R, Quirk WS, Robinson PJ (1994) Neuronal regulation of cochlear blood flow in the guinea-pig. J Physiol 480:563–573.

Laurikainen EA, Ren T, Miller JM, Nuttall AL, Quirk WS (1997) The tonic sympathetic input to the cochlear vasculature in guinea pig. Hear Res 105:141–145.

Liberman MC, Dodds LW, Learson DA (1985) Structure–function correlation in noisedamaged ears. In: Salvi RJ, Henderson D, Hamernik RP, Colletti, V (eds) Basic and Applied Aspects of Noise Induced Hearing Loss. New York: Plenum Press, pp. 163–178.

Miller JM, Dengerink H (1988) Control of inner ear blood flow. Am J Otolaryngol 9:302–316.

Miller JM, Ren TY, Nuttall AL (1995) Studies of inner ear blood flow in animals and human beings. Otolaryngol Head Neck Surg 112:101–113.

Miller JM, Brown JN, Schacht J (2003) 8-iso-prostaglandin F(2alpha), a product of noise exposure, reduces inner ear blood flow. Audiol Neurootol 8:207–221.

Mills JH, Adkins WY, Gilbert RM (1981) Temporary threshold shifts produced by wideband noise. J Acoust Soc Am 70:390–396.

Minami SB, Yamashita D, Schacht J, Miller JM (2004) Calcineurin activation contributes to noise-induced hearing loss. J Neurosci Res 78:383–392.

Nagahara K, Aoyama T, Fukuse S, Noi O (1988) Effects of prostaglandins on perilymphatic oxygenation. Enhancement of cochlear autoregulation by prostacyclin. Acta Otolaryngol Suppl 456:143–150.

Nicotera T, Henderson D, Zheng XY, Ding DL, McFadden SL (1999) Reactive oxygen species, apoptosis and necrosis in noise-exposed cochleas of chinchillas. Paper presented at the 22nd Annual Midwinter Meeting of the Association for Research in Otolaryngology, St. Petersburg, FL.

Nicotera TM, Hu BH, Henderson D (2003) The caspase pathway in noise-induced apoptosis of the chinchilla cochlea. J Assoc Res Otolaryngol 4:466–477.

Nicotera TM, Ding D, McFadden SL, Salvemini D, Salvi R (2004) Paraquat-induced hair cell damage and protection with the superoxide dismutase mimetic m40403. Audiol Neurootol 9:353–362.

216 D. Henderson, B. Hu, and E. Bielefeld

Nordmann AS, Bohne BA, Harding GW (2000) Histopathological differences between temporary and permanent threshold shift. Hear Res 139:13–30.

Ohlemiller KK, Wright JS, Dugan LL (1999) Early elevation of cochlear reactive oxygen species following noise exposure. Audiol Neurootol 4:229–236.

Perlman H, Kimura R (1962) Cochlear blood flow in acoustic trauma. Acta Otolaryngolica 54:99–110.

Pickles JO, Comis SD, Osborne MP (1985) The morphology of stereocilia and their cross-links in relation to noise damage in the guinea pig. In: Salvi RJ, Henderson D, Hamernik RP, Colletti, V (eds) Basic and Applied Aspects of Noise Induced Hearing Loss. New York: Plenum Press, pp. 31–42.

Puel JL, d’Aldin CG, Saffiende S, Eybalin M, Pujol R (1996) Excitotoxicity and plasticity of IHC-auditory nerve contributes to both temporary and permanent threshold shift. In: Axelsson A, Borchgrevink HM, Hamernik RP, Hellström PA, Henderson D, Salvi RJ (eds) Scientific Basis of Noise-induced Hearing Loss. New York: Thieme, pp. 36–42.

Puel JL, Ruel J, Gervais d’Aldin C, Pujol R (1998) Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss. NeuroReport 9:2109–2114.

Pujol R, Puel JL, d’Aldin CG, Eybalin M (1990) Physiopathology of the glutaminergic synapses in the cochlea. Acta Otolaryngol Suppl 476:32–36.

Pujol R, Puel JL, Gervais d’Aldin C, Eybalin M (1993) Pathophysiology of the glutamatergic synapses in the cochlea. Acta Otolaryngol 113:330–334.

Quaranta A, Portalatini P, Henderson D (1998) Temporary and permanent threshold shift: an overview. Scand Audiol Suppl 48:75–86.

Rajan R (1996) Involvement of cochlear efferent pathways in protective effects elicited with binaural loud sound exposure in cats. J Neurophysiol 74:582–597.

Rajan R, Johnstone BM (1983) Crossed cochlear influences on monaural temporary threshold shifts. Hear Res 9:279–294.

Reiter ER, Liberman MC (1995) Efferent-mediated protection from acoustic overexposure: relation to slow effects of olivocochlear stimulation. J Neurophysiol 73: 506–514.

Ren TY, Laurikainen E, Quirk WS, Miller JM, Nuttall AL (1993) Effects of electrical stimulation of the superior cervical ganglion on cochlear blood flow in guinea pig. Acta Otolaryngol 113:146–151.

Saunders JC, Canlon B, Flock A (1985) Mechanical changes in stereocilia following overstimulation. In: Salvi RJ, Henderson D, Hamernik RP, Colletti, V (eds) Basic and Applied Aspects of Noise Induced Hearing Loss. New York: Plenum Press, pp. 11–30.

Sellick PM, Patuzzi R, Johnstone BM (1982) Measurement of basilar membrane motion in the guinea pig using the Mossbauer technique. J Acoust Soc Am 72:131–141.

Spicer SS, Schulte BA (1996) The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res 100:80–100.

Spoendlin H (1985) Histopathology of noise deafness. J Otolaryngol 14:282–286. Sweeney MH, Fosbroke D, Goldenhar LM, Jackson LL, Lushniak BD, Merry L,

Schneider, S, Stephenson, M (2005) Health consequences working in construction. In: Coble R, Hinze J, Haupt T (eds) Construction Safety and Health Management. Columbus, OH: Prentice-Hall, pp: 178–196.

Thalmann R, Miyoshi T, Kusakari J, Ise I (1975) Normal and abnormal energy metabolism of the inner ear. Otolaryngol Clin North Am 8:313–333.

Thorne PR, Nuttall AL (1987) Laser Doppler measurements of cochlear blood flow during loud sound exposure in the guinea pig. Hear Res 27:1–10.

7. Noise-Induced Cochlear Pathology

217

Turrens JF, Freeman BA, Levitt JG, Crapo JD (1982) The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch Biochem Biophys 217: 401–410.

Ugnell AO, Hasegawa M, Lundquist PG, Andersson R (2000) Effect of carbon dioxide on cochlear blood flow in guinea pigs. Acta Otolaryngol 120:11–18.

Vicente-Torres MA, Schacht J (2006) A BAD link to mitochondrial cell death in the cochlea of mice with noise-induced hearing loss. J Neurosci Res 83:1564–1572.

von Békésy G (1952) Direct observation of the vibrations of the cochlear partition under a microscope. Acta Otolaryngol 42:197–201.

Wang Y, Hirose K, Liberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol 3:248–268.

Wangemann P (2002) K+ cycling and the endocochlear potential. Hear Res 165:1–9. Ward WD (1966) The use of TTS in derivation of damage risk criteria for noise exposure.

Intern Aud 5:309–313.

Yamane H, Nakai Y, Takayama M, Konishi K, Iguchi H, Nakagawa T, Shibata S, Kato A, Sunami K, Kawakatsu C (1995) The emergence of free radicals after acoustic trauma and strial blood flow. Acta Otolaryngol Suppl 519:87–92.

Yamashita D, Jiang HY, Schacht J, Miller JM (2004) Delayed production of free radicals following noise exposure. Brain Res 1019:201–209.

Yang WP, Henderson D, Hu BH, Nicotera TM (2004) Quantitative analysis of apoptotic and necrotic outer hair cells after exposure to different levels of continuous noise. Hear Res 196:69–76.

Zheng XY, Henderson D, Hu BH, Ding DL, McFadden SL (1997a) The influence of the cochlear efferent system on chronic acoustic trauma. Hear Res 107:147–159.

Zheng XY, Henderson D, Hu BH, McFadden SL (1997b) Recovery of structure and function of inner ear afferent synapses following kainic acid excitotoxicity. Hear Res 105:65–76.

8

Drug-Induced Hearing Loss

Leonard P. Rybak, Andra E. Talaska, and Jochen Schacht

1. Introduction

1.1 “Ototoxic” Drugs

“Ototoxicity,” drug-induced damage to the auditory or vestibular parts of the inner ear, has probably been in existence since our ancestors began using herbs as remedies for their ailments (Schacht and Hawkins 2006). After all, some of the most powerful ototoxic drugs known today are derived from natural sources: the aminoglycosides, synthesized by soil-dwelling bacteria. Other prominent ototoxic drugs, although causing only temporary threshold shifts, are quinine and salicylate, both derived from tree bark. While the recognition of the cochlear and vestibular detriments exerted by drugs goes back centuries, the problem of ototoxicity was catapulted into the medical and public awareness in 1944 with the arrival of streptomycin, the first aminoglycoside antibiotic (Schatz et al. 1944). Hailed as the long-sought cure for tuberculosis and other gram-negative infections, streptomycin also very quickly revealed its destructive power to the vestibular system (Hinshaw and Feldman 1945).

Since then, with the growing appreciation of potential side effects to the inner ear, other drugs were found that affected hearing or balance. Antimicrobial agents such as chloramphenicol, erythromycin, polymyxin B, and vancomycin have been sporadically associated with ototoxic side effects, as have topical disinfectants such as chlorhexidine. Cisplatin brought the success of cancer chemotherapy at the price of hearing loss in many patients. Loop diuretics (ethacrynic acid, bumetanide, and furosemide) gained unfavorable prominence in part for their own reversible effects on the auditory system but mostly as potentiating agents when given together with aminoglycoside antibiotics. The combination of these two classes of drugs has devastating effects on the auditory system even if the concentration of either drug alone would prove innocuous. Also of concern as potentially ototoxic agents are organometals such as organotins and organic mercury preparations as well as the industrial solvents toluene and styrene. While the organometals can have profound toxicity by themselves, the solvents tend to interact adversely with noise exposure, jeopardizing those who work in industrial environments.

219

220 L.P. Rybak, A.E. Talaska, and J. Schacht

Because of the sheer number of patients affected and because of the irreversible nature of their effects on the inner ear, aminoglycoside antibiotics and cisplatin command the most attention today among potentially ototoxic medications. This chapter therefore focuses on these classes of drugs.

2. History

2.1 Cisplatin

Cisplatin was first synthesized by Peyrone in 1845, and hence is also known as Peyrone’s chloride (Rosenberg 1980). Its chemical structure was determined in 1893 by Werner as an inorganic complex consisting of a central atom of platinum surrounded by chloride and amine groups in the cis position (Fig. 8.1a). Its biological effects, however, appear to have gone unnoticed for a century. In 1965, Rosenberg et al. discovered some unusual effects in experiments with Escherichia coli subjected to a current that was delivered between platinum electrodes. Individual cells that normally are rods of about 1 by 5 μm were elongated into filaments up to 300 times their original length under the influence of this current, due to a stable form of platinum released from the electrodes. The principal compound involved was Peyrone’s chloride, or cis-dichlorodiammine platinum (II).

The introduction of cisplatin as an antineoplastic agent was primarily based on studies beginning in the 1960s showing its effectiveness in retarding the growth of sarcoma 180 in mice and increasing the survival of mice bearing the highly metastatic L1210 leukemia (Rosenberg et al. 1969). Among several platinum compounds, cisplatin had the greatest efficacy against a wide variety of animal tumors. The drug exhibited: (1) marked antitumor activity; (2) broad-spectrum activity against drug-resistant as well as drug sensitive tumors; (3) efficacy against slowly growing as well as rapidly growing tumors; (4) activity against a tumor insensitive to “S” phase inhibitors; (5) induction of regression of transplantable tumors induced by viruses as well as chemicals; (6) activity in a variety of species; (7) effectiveness against disseminated as well as solid tumors; and (8) potency in rescuing animals with advanced tumors who were near death (Rosenberg 1973). Subsequent studies revealed efficacy against

H3N NH3

Pt

Cl Cl

Cisplatin

Gentamicin

Figure 8.1. Structures of cisplatin and gentamicin.