Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материалы по мат. анализу для самостоятельного обучения / Глава 7 Обыкновенные дифференциальные уравнения.doc
Скачиваний:
97
Добавлен:
29.03.2016
Размер:
884.74 Кб
Скачать

Уравнения в полных дифференциалах (тотальные).

Определение. Дифференциальное уравнение первого порядка вида:

называется уравнением в полных дифференциалах, если левая часть этого уравнения представляет собой полный дифференциал некоторой функции

Интегрирование такого уравнения сводится к нахождению функции u, после чего решение легко находится в виде:

Таким образом, для решения надо определить:

1) в каком случае левая часть уравнения представляет собой полный дифференциал функции u;

2) как найти эту функцию.

Если дифференциальная форма является полным дифференциалом некоторой функции u, то можно записать:

Т.е. .

Найдем смешанные производные второго порядка, продифференцировав первое уравнение по у, а второе – по х:

Приравнивая левые части уравнений, получаемнеобходимое и достаточное условие того, что левая часть дифференциального уравнения является полным дифференциалом. Это условие также называется условием тотальности.

Теперь рассмотрим вопрос о нахождении собственно функции u.

Проинтегрируем равенство :

Вследствие интегрирования получаем не постоянную величину С, а некоторую функцию С(у), т.к. при интегрировании переменная у полагается постоянным параметром.

Определим функцию С(у).

Продифференцируем полученное равенство по у.

Откуда получаем:

Для нахождения функции С(у) необходимо проинтегрировать приведенное выше равенство. Однако, перед интегрированием надо доказать, что функция С(у) не зависит от х. Это условие будет выполнено, если производная этой функции по х равна нулю.

Теперь определяем функцию С(у):

Подставляя этот результат в выражение для функции u, получаем:

Тогда общий интеграл исходного дифференциального уравнения будет иметь вид:

Следует отметить, что при решении уравнений в полных дифференциалах не обязательно использовать полученную формулу. Решение может получиться более компактным, если просто следовать методу, которым формула была получена.

Пример. Решить уравнение

Проверим условие тотальности:

Условие тотальности выполняется, следовательно, исходное дифференциальное уравнение является уравнением в полных дифференциалах.

Определим функцию u.

;

Итого,

Находим общий интеграл исходного дифференциального уравнения:

Уравнения вида y = f(y’) и x = f(y’).

Решение уравнений, не содержащих в одном случае аргумента х, а в другом – функции у, ищем в параметрической форме, принимая за параметр производную неизвестной функции.

Для уравнения первого типа получаем:

Делая замену, получаем:

В результате этих преобразований имеем дифференциальное уравнение с разделяющимися переменными.

Общий интеграл в параметрической форме представляется системой уравнений:

Исключив из этой системы параметр р, получим общий интеграл и не в параметрической форме.

Для дифференциального уравнения вида x = f(y’) с помощью той же самой подстановки и аналогичных рассуждений получаем результат:

Уравнения Лагранжа и Клеро.

( Алекси Клод Клеро (1713 – 1765) французский математик

ин. поч. член Петерб. АН )

Определение. Уравнением Лагранжа называется дифференциальное уравнение, линейное относительно х и у, коэффициенты которого являются функциями от y.

Для нахождения общего решение применяется подстановка p = y.

Дифференцируя это уравнение,c учетом того, что , получаем:

Если решение этого (линейного относительно х) уравнения есть то общее решение уравнения Лагранжа может быть записано в виде:

Определение. Уравнением Клеро называется уравнение первой степени (т.е. линейное) относительно функции и аргумента вида:

Вообще говоря, уравнение Клеро является частным случаем уравнения Лагранжа.

С учетом замены , уравнение принимает вид:

Это уравнение имеет два возможных решения:

или

Впервом случае:

Видно, что общий интеграл уравнения Клеро представляет собой семейство прямых линий.

Во втором случае решение в параметрической форме выражается системой уравнений:

Исключая параметр р, получаем второе решение F(x, y) = 0. Это решение не содержит произвольной постоянной и не получено из общего решения, следовательно, не является частным решением.

Это решение будет являться особым интегралом. ( См. Особое решение. )

Далее рассмотрим примеры решения различных типов дифференциальных уравнений первого порядка.

Пример. Решить уравнение с заданными начальными условиями.

Это линейное неоднородное дифференциальное уравнение первого порядка.

Решим соответствующее ему однородное уравнение.

Для неоднородного уравнения общее решение имеет вид:

Дифференцируя, получаем:

Для нахождения функции С(х) подставляем полученное значение в исходное дифференциальное уравнение:

Общее решение:

C учетом начального условия определяем постоянный коэффициентC.

Окончательно получаем:

Для проверки подставим полученный результат в исходное дифференциальное уравнение: верно

Ниже показан график интегральной кривой уравнения.

Пример. Найти общий интеграл уравнения .

Это уравнение с разделяющимися переменными.

Общий интеграл имеет вид:

Построим интегральные кривые дифференциального уравнения при различных значениях С.

С = - 0,5 С = -0,02 С = -1 С = -2

С = 0,02 С = 0,5 С = 1 С = 2

Пример. Найти решение дифференциального уравнения, удовлетворяющее заданным начальным условиям.

Это уравнение с разделяющимися переменными.

Общее решение имеет вид:

Найдем частное решение при заданном начальном условии у(0) = 0.

Окончательно получаем:

Пример. Решить предыдущий пример другим способом.

Действительно, уравнение может быть рассмотрено как линейное неоднородное дифференциальное уравнение.

Решим соответствующее ему линейное однородное уравнение.

Решение неоднородного уравнения будет иметь вид:

Тогда

Подставляя в исходное уравнение, получаем:

Итого

Сучетом начального условия у(0) = 0 получаем

Как видно результаты, полученные при решении данного дифференциального уравнения различными способами, совпадают.

При решении дифференциальных уравнений бывает возможно выбирать метод решения, исходя из сложности преобразований.

Пример. Решить уравнение с начальным условием у(0) = 0.

Это линейное неоднородное уравнение. Решим соответствующее ему однородное уравнение.

Для линейного неоднородного уравнения общее решение будет иметь вид:

Для определения функции С(х) найдем производную функции у и подставим ее в исходное дифференциальное уравнение.

Итого

Проверим полученное общее решение подстановкой в исходное дифференциальное уравнение.

(верно)

Найдем частное решение при у(0) = 0.

Окончательно

Пример. Найти решение дифференциального уравнения

с начальным условием у(1) = 1.

Это уравнение может быть преобразовано и представлено как уравнение с разделенными переменными.

С учетом начального условия:

Окончательно

Пример. Решить дифференциальное уравнение с начальным условием у(1) = 0.

Это линейное неоднородное уравнение.

Решим соответствующее ему однородное уравнение.

Решение неоднородного уравнения будет иметь вид:

Подставим в исходное уравнение:

Общее решение будет иметь вид:

C учетом начального условия у(1) = 0:

Частное решение:

Пример. Найти решение дифференциального уравнения с начальным условием у(1) = е.

Это уравнение может быть приведено к виду уравнения с разделяющимися переменными с помощью замены переменных.

Обозначим:

Уравнение принимает вид:

Получили уравнение с разделяющимися переменными.

Сделаем обратную замену:

Общее решение:

C учетом начального условия у(1) = е:

Частное решение

Второй способ решения.

Получили линейное неоднородное дифференциальное уравнение. Соответствующее однородное:

Решение исходного уравнения ищем в виде:

Тогда

Подставим полученные результаты в исходное уравнение:

Получаем общее решение:

Пример. Решить дифференциальное уравнение с начальным условием у(1)=0.

В этом уравнении также удобно применить замену переменных.

Уравнение принимает вид:

Делаем обратную подстановку:

Общее решение:

C учетом начального условия у(1) = 0:

Частное решение:

Второй способ решения.

Замена переменной:

Общее решение:

Теорема. (Теорема Коши) Если f(z) - аналитическая функция на некоторой области, то интеграл от f(z) по любому кусочно – гладкому контуру, принадлежащему этой области равен нулю.

30